吞噬作用
免疫学
Fc受体
抗体
受体
CD16
单克隆抗体
抗体调理
美罗华
髓样
免疫球蛋白G
同型
流式细胞术
阻断抗体
免疫系统
生物
调理素
医学
内科学
CD3型
CD8型
标识
DOI:10.1093/immadv/ltad025
摘要
Antibody-based immunotherapy is successful in treating cancer, but its effectiveness varies among patients. Therefore, understanding myeloid phagocytic responses to therapeutic antibodies is critical. Immunoglobulin Fc receptors and host characteristics were evaluated in phagocytosis of 3D-cultured CD20+ B-cell lymphoma (spheroids) treated with different anti-CD20 rituximab (RTX) monoclonal antibody isotypes. Monocytes from healthy donors of different ages and sexes were isolated, and their Fc receptors for IgG (FcγRI, FcγRIIa, FcγRIIIa) and IgA (FcαRI) were determined, as well as Fc receptor gene polymorphisms. Antibody-dependent phagocytosis was assessed using flow cytometry, confocal imaging, and Fc receptor blocking. RTX isotypes showed varying efficacy in stimulating the phagocytosis of spheroids. RTX-IgG3 proved to be the most efficient, followed by RTX-IgG1. Monocytes infiltrated RTX-treated spheroids at the periphery but migrated also into the core when stimulated with RTX-IgG3. Blocking FcγRI or FcγRIIa, but not FcγRIIIa, with antibodies inhibited RTX-IgG1 and RTX-IgG3-mediated phagocytosis. Monocytes from younger women demonstrated higher FcγRI and FcγRIIa levels compared to older women, while older men displayed increasing FcγRI and FcγRIIIa levels compared to younger men. Monocytes from younger women displayed greater phagocytic activity compared to older women, while older men had better IgG-mediated phagocytosis than younger men. Single Fc receptor levels, or FcγRIIa and FcγRIIIa genetic variants, had a low correlation with phagocytic intensity, likely as a result of multiple engagements of Fcreceptors for IgG-mediated phagocytosis. In conclusion, antibody isotype, Fc receptors, age, and sex influence tumor phagocytosis. This study exposes the relationship between host traits and the efficacy of therapeutic antibodies, providing insights into cancer immunotherapy treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI