Knowledge-Associated Embedding for Memory-Aware Knowledge Tracing

遗忘 计算机科学 最佳显著性理论 嵌入 构造(python库) 人工智能 召回 知识图 追踪 任务(项目管理) 机器学习 领域知识 认知心理学 心理学 经济 管理 程序设计语言 心理治疗师 操作系统
作者
Jiawei Li,Yuanfei Deng,Shun Mao,Yixiu Qin,Yuncheng Jiang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tcss.2023.3306909
摘要

Knowledge tracing (KT) refers to predicting learners’ performance in the future according to their historical learning interactions, which has become an essential task for the computer-aided education (CAE) system. Recent studies alleviate the data sparsity problem by mining higher-order information between questions and skills. However, the effect of multiple skills in the question is not distinguished, and various learning behaviors need to be better modeled. In this article, we propose a knowledge-associated embedding for the memory-aware KT (KMKT) framework. Specifically, we first construct a question-skill bipartite graph with attribute features. A knowledge-associated embedding (KAE) module is proposed to capture the distinctiveness of multiskills via the process of knowledge propagation and knowledge aggregation based on predefined knowledge-paths. Then, to simulate the memory recall phenomenon of the learners in KT, we design a memory-aware module for long short-term memory (MA-LSTM) networks. A temporal attention layer in MA-LSTM is proposed to learn the forgetting mechanism of the human brain. Finally, we introduce a learning-gain (LG) layer to obtain learners’ benefits after each exercise. Extensive experiments on four real-world datasets illustrate that our KMKT model performs better than the other baseline models, which verifies the effectiveness of our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
1秒前
1秒前
阿旭完成签到 ,获得积分10
1秒前
Diane关注了科研通微信公众号
2秒前
凌问晴发布了新的文献求助10
2秒前
aa发布了新的文献求助10
2秒前
潺潺流水完成签到,获得积分10
3秒前
3秒前
3秒前
mangguobale完成签到,获得积分20
3秒前
SciGPT应助彭于晏采纳,获得10
4秒前
英姑应助彭于晏采纳,获得10
4秒前
爆米花应助彭于晏采纳,获得10
4秒前
斯文败类应助彭于晏采纳,获得10
4秒前
无花果应助彭于晏采纳,获得10
4秒前
脑洞疼应助彭于晏采纳,获得10
4秒前
orixero应助彭于晏采纳,获得10
4秒前
充电宝应助彭于晏采纳,获得10
4秒前
NexusExplorer应助彭于晏采纳,获得10
4秒前
田様应助彭于晏采纳,获得10
4秒前
4秒前
5秒前
aka2012发布了新的文献求助10
6秒前
6秒前
6秒前
陶陶发布了新的文献求助10
6秒前
zhanghl发布了新的文献求助10
6秒前
7秒前
lin发布了新的文献求助10
7秒前
张大鹅完成签到,获得积分10
7秒前
阿飞完成签到,获得积分10
7秒前
8秒前
8秒前
白了个白发布了新的文献求助30
8秒前
深情安青应助sunny30采纳,获得10
8秒前
8秒前
欢呼芒果发布了新的文献求助10
9秒前
Tiannn发布了新的文献求助10
9秒前
qiang完成签到,获得积分10
9秒前
今后应助excalibur采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180