Knowledge-Associated Embedding for Memory-Aware Knowledge Tracing

遗忘 计算机科学 最佳显著性理论 嵌入 构造(python库) 人工智能 召回 知识图 追踪 任务(项目管理) 机器学习 领域知识 认知心理学 心理学 管理 经济 心理治疗师 程序设计语言 操作系统
作者
Jiawei Li,Yuanfei Deng,Shun Mao,Yixiu Qin,Yuncheng Jiang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tcss.2023.3306909
摘要

Knowledge tracing (KT) refers to predicting learners’ performance in the future according to their historical learning interactions, which has become an essential task for the computer-aided education (CAE) system. Recent studies alleviate the data sparsity problem by mining higher-order information between questions and skills. However, the effect of multiple skills in the question is not distinguished, and various learning behaviors need to be better modeled. In this article, we propose a knowledge-associated embedding for the memory-aware KT (KMKT) framework. Specifically, we first construct a question-skill bipartite graph with attribute features. A knowledge-associated embedding (KAE) module is proposed to capture the distinctiveness of multiskills via the process of knowledge propagation and knowledge aggregation based on predefined knowledge-paths. Then, to simulate the memory recall phenomenon of the learners in KT, we design a memory-aware module for long short-term memory (MA-LSTM) networks. A temporal attention layer in MA-LSTM is proposed to learn the forgetting mechanism of the human brain. Finally, we introduce a learning-gain (LG) layer to obtain learners’ benefits after each exercise. Extensive experiments on four real-world datasets illustrate that our KMKT model performs better than the other baseline models, which verifies the effectiveness of our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助哒哒采纳,获得10
1秒前
1秒前
沉默乐荷完成签到,获得积分10
1秒前
rstorz应助皮尤尤采纳,获得10
1秒前
sweetbearm应助小离采纳,获得10
1秒前
何青岚关注了科研通微信公众号
2秒前
doudou完成签到,获得积分20
2秒前
李健的小迷弟应助潦草采纳,获得10
2秒前
3秒前
3秒前
3秒前
柒八染完成签到,获得积分10
3秒前
wsljc134完成签到,获得积分20
3秒前
4秒前
善良香岚完成签到,获得积分20
4秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
4秒前
不安太阳完成签到,获得积分10
5秒前
t_suo完成签到,获得积分10
5秒前
bioinforiver完成签到,获得积分10
5秒前
乐观跳跳糖完成签到,获得积分10
5秒前
5秒前
WxChen发布了新的文献求助10
6秒前
6秒前
酷炫的香魔完成签到,获得积分10
6秒前
6秒前
6秒前
NexusExplorer应助无奈满天采纳,获得10
6秒前
qwt_hello完成签到,获得积分10
6秒前
6秒前
海涛完成签到,获得积分10
7秒前
星星发布了新的文献求助10
8秒前
qq完成签到,获得积分10
8秒前
8秒前
8秒前
中央戏精学院完成签到,获得积分10
8秒前
寒冷依秋完成签到,获得积分10
8秒前
彭于晏应助jogrgr采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759