Identification of active slip modes in twinned bicrystals of GNS/Cu composite through intragranular misorientation axes analysis

方向错误 材料科学 电子背散射衍射 打滑(空气动力学) 复合材料 微晶 扫描电子显微镜 微观结构 复合数 结晶学 晶界 冶金 物理 化学 热力学
作者
Hailong Shi,Xiaojun Wang,Chunlei Zhang,Xuejian Li,Xiaoshi Hu,Weimin Gan,Chao Xu
出处
期刊:Materials Characterization [Elsevier]
卷期号:206: 113413-113413 被引量:1
标识
DOI:10.1016/j.matchar.2023.113413
摘要

Bicrystals serve as a simplified model system for studying the deformation behavior of polycrystalline materials. In this study, we fabricated graphene nanosheets (GNSs) reinforced copper (Cu) matrix laminated composites using electrophoretic deposition and subsequent vacuum hot-press sintering. Interestingly, the composite exhibited a bicrystal microstructure, with two types of adjacent crystals, i.e., denoted as crystal A (φ1 = 222.06, Φ = 40.54, φ2 = 82.5) and crystal B (φ1 = 141.36, Φ = 43.76, φ2 = 1.94), displaying a twin orientation relationship. To investigate the deformation behavior of the GNS/Cu composite, we conducted interrupted room temperature uniaxial tensile tests combined with Scanning Electron Microscope (SEM) Electron Backscatter Diffraction (EBSD) characterization. To identify the activated slip systems in the composites, we performed trace analysis, applied the Schmid Factor law, analyzed the deformation gradient tensor, and conducted intragranular misorientation axis (IGMA) analysis. The trace analysis revealed that slip systems with high Schmid Factor values were favored during tension. Moreover, the deformation gradient tensor elements of the primary slip systems in the two crystals confirmed the deformation features observed by SEM. However, crystal B exhibited a significant deviation in trace angle. Further IGMA investigation revealed that during tension, some slip systems, which were not favored by the Schmid Factor law, were also activated in crystal B. The activation of these slip systems in crystal B can be attributed to the large deviation in the trace angle. The findings in this work provide valuable insights for exploring the underlying deformation mechanisms in polycrystalline materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的铅笔完成签到,获得积分10
刚刚
www完成签到 ,获得积分10
刚刚
gwgplmz发布了新的文献求助10
刚刚
1秒前
专一的鸡翅完成签到 ,获得积分10
1秒前
1秒前
救驾来迟发布了新的文献求助10
1秒前
满意的大船完成签到,获得积分20
1秒前
明明千岁千岁千千岁完成签到 ,获得积分10
1秒前
科研通AI2S应助吴丹采纳,获得10
1秒前
星星完成签到 ,获得积分10
1秒前
lyl1995完成签到,获得积分10
1秒前
炙热行云完成签到,获得积分10
2秒前
无私的凌萱完成签到,获得积分10
3秒前
zhnf1179完成签到,获得积分10
3秒前
朱朱完成签到 ,获得积分10
3秒前
一只暮蝉23完成签到,获得积分10
3秒前
若山完成签到,获得积分10
4秒前
4秒前
CrsCrsCrs完成签到,获得积分10
4秒前
mxm完成签到,获得积分10
4秒前
Avatar完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Criminology34应助平常的如风采纳,获得10
4秒前
somajason完成签到,获得积分10
4秒前
keyanlv发布了新的文献求助10
5秒前
风中外绣发布了新的文献求助10
5秒前
浮游应助AoAoo采纳,获得10
5秒前
6秒前
Zero完成签到,获得积分0
6秒前
淡然的奎完成签到,获得积分10
6秒前
Lucas应助cc采纳,获得10
6秒前
南北完成签到,获得积分0
7秒前
PDD完成签到,获得积分20
7秒前
核桃完成签到,获得积分10
7秒前
ayawbb完成签到,获得积分10
7秒前
小杨老师完成签到,获得积分10
8秒前
8秒前
天天快乐应助gwgplmz采纳,获得10
8秒前
今后应助lxl采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130