Green synthesis of FeCu@biochar nanocomposites through a mechanochemical method for enhanced tetracycline degradation via peroxymonosulfate activation

生物炭 纳米复合材料 催化作用 降级(电信) 化学工程 X射线光电子能谱 热解 环境修复 材料科学 化学 猝灭(荧光) 纳米技术 冶金 污染 有机化学 荧光 生物 物理 工程类 电信 量子力学 计算机科学 生态学
作者
Yue Wang,Lele Qiao,Xueyi Zhang,Zhenglong Liu,Tielong Li,Haitao Wang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:328: 125077-125077 被引量:31
标识
DOI:10.1016/j.seppur.2023.125077
摘要

Biochar-based nanocomposites are recognized as promising catalysts for peroxymonosulfate (PMS) activation due to their cost-effectiveness, large surface area, and desirable activity. However, their conventional preparation involves laborious and energy-consuming high-temperature pyrolysis. In this study, we introduce an efficient approach to synthesize FeCu@BC nanocomposites using iron and copper chlorides with green tea via a mechanochemical method. Characterization results show that copper incorporation enhances the defect degree of biochar, increasing oxygen vacancies in FeCu@BC. Remarkably, FeCu@BC exhibits an outstanding efficiency of 92.24% in degrading TC, achieving more than 85% TC removal even under challenging conditions with varying pH levels and competing ions, making it a promising catalyst for practical applications. Through detailed investigations, we identify O2− and 1O2 as the primary active species responsible for TC degradation, supported by quenching and EPR tests. Furthermore, copper doping significantly improves electron transfer between FeCu@BC and PMS, promoting PMS activation during degradation. XPS analysis provides insights into the transformation of doped copper species, acting as potential active sites that facilitate PMS decomposition to generate O2− and 1O2. With significant advantages in cost-effectiveness and avoidance of energy-intensive pyrolysis, the mechanochemically synthesized FeCu@BC nanocomposites hold great promise for wide application in efficient wastewater treatment and environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Chen采纳,获得10
刚刚
2秒前
2秒前
goldenfleece发布了新的文献求助10
2秒前
怕黑的钥匙完成签到 ,获得积分10
2秒前
zhangsf88完成签到,获得积分10
2秒前
科研通AI5应助科研小能手采纳,获得10
2秒前
乐乐应助热情芷荷采纳,获得10
3秒前
想发sci完成签到,获得积分10
3秒前
kaifeiQi完成签到,获得积分10
3秒前
共享精神应助Elsa采纳,获得10
3秒前
3秒前
Owen应助怎么可能会凉采纳,获得10
4秒前
小马甲应助ATAYA采纳,获得10
5秒前
溜溜发布了新的文献求助10
7秒前
7秒前
怕黑的钥匙关注了科研通微信公众号
7秒前
CipherSage应助小梁要加油采纳,获得10
8秒前
杰克发布了新的文献求助10
9秒前
liuq完成签到,获得积分10
10秒前
10秒前
13秒前
爱吃猫的鱼完成签到 ,获得积分10
13秒前
13秒前
哞哞完成签到,获得积分10
13秒前
颗粒完成签到,获得积分10
14秒前
14秒前
16秒前
Elsa完成签到,获得积分10
16秒前
16秒前
榴下晨光完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
章铭-111发布了新的文献求助10
17秒前
薪炭林应助su采纳,获得10
18秒前
am完成签到 ,获得积分10
18秒前
Hangerli发布了新的文献求助10
19秒前
Akim应助嘟嘟采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808