亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 数学分析 语言学 哲学 地震学 程序设计语言 地质学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
乐乐应助坚守采纳,获得10
3秒前
科研通AI6应助zhdhh采纳,获得10
4秒前
信陵君无忌完成签到,获得积分10
4秒前
li发布了新的文献求助10
7秒前
领导范儿应助哦噢藕采纳,获得10
9秒前
樱桃汽水怪兽完成签到,获得积分10
10秒前
li完成签到,获得积分10
13秒前
张张完成签到,获得积分10
13秒前
17秒前
哦噢藕完成签到,获得积分10
19秒前
21秒前
明理的蜗牛完成签到,获得积分10
21秒前
CJY发布了新的文献求助10
22秒前
小马甲应助科研通管家采纳,获得10
25秒前
优雅的大白菜完成签到 ,获得积分10
27秒前
桐桐应助少年啊采纳,获得10
29秒前
老北京完成签到,获得积分10
31秒前
33秒前
koi完成签到,获得积分20
34秒前
36秒前
阿朱完成签到 ,获得积分10
37秒前
哦噢藕发布了新的文献求助10
41秒前
48秒前
tong童完成签到 ,获得积分10
48秒前
阿莫西林胶囊完成签到,获得积分10
56秒前
LYL完成签到,获得积分10
58秒前
1分钟前
Elsa完成签到,获得积分10
1分钟前
CipherSage应助浅呀呀呀采纳,获得10
1分钟前
Criminology34完成签到,获得积分0
1分钟前
1分钟前
学习要认真喽完成签到 ,获得积分10
1分钟前
平淡的翅膀完成签到,获得积分10
1分钟前
江逾白发布了新的文献求助10
1分钟前
Winter完成签到 ,获得积分10
1分钟前
CJY完成签到,获得积分10
1分钟前
江逾白完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264