Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 数学分析 语言学 哲学 地震学 程序设计语言 地质学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
plain完成签到,获得积分20
1秒前
丘比特应助LI采纳,获得10
1秒前
崔尔蓉发布了新的文献求助10
1秒前
1秒前
烟花应助自然的晓亦采纳,获得10
1秒前
2秒前
西乡塘塘主完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
诸葛一笑发布了新的文献求助10
4秒前
桂花酒酿完成签到,获得积分10
4秒前
果味叶完成签到,获得积分10
4秒前
Z在发布了新的文献求助10
5秒前
花生发布了新的文献求助10
5秒前
帅气小刺猬完成签到,获得积分10
6秒前
科研通AI6应助自然砖家采纳,获得10
7秒前
一顿鸡米花完成签到,获得积分10
7秒前
Mental完成签到,获得积分10
7秒前
s0x0y0完成签到,获得积分10
8秒前
汪兆艺发布了新的文献求助10
9秒前
9秒前
77seven完成签到,获得积分10
10秒前
10秒前
寻道图强应助灵银采纳,获得30
10秒前
花生完成签到,获得积分10
11秒前
慕青应助诸葛一笑采纳,获得10
11秒前
11秒前
11秒前
建设完成签到,获得积分10
11秒前
dc关注了科研通微信公众号
12秒前
yingxinfu完成签到 ,获得积分10
13秒前
池鱼完成签到 ,获得积分10
14秒前
领导范儿应助遇见飞儿采纳,获得10
14秒前
14秒前
汪兆艺完成签到,获得积分20
15秒前
建设发布了新的文献求助10
15秒前
何必在乎发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382