Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 数学分析 语言学 哲学 地震学 程序设计语言 地质学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助whynot采纳,获得10
刚刚
Pettina完成签到 ,获得积分10
刚刚
桐桐应助刘刘采纳,获得10
刚刚
Majoe完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
鱼鱼鱼鱼发布了新的文献求助10
2秒前
舒适电源完成签到,获得积分10
3秒前
lzzk完成签到,获得积分10
3秒前
ZYN完成签到 ,获得积分10
4秒前
无花果应助大力成危采纳,获得10
4秒前
is发布了新的文献求助10
4秒前
4秒前
江江江11发布了新的文献求助20
5秒前
肚子警官完成签到 ,获得积分10
5秒前
5秒前
wintersss完成签到,获得积分10
6秒前
7秒前
29完成签到,获得积分10
8秒前
楚子关发布了新的文献求助10
9秒前
dujinjun发布了新的文献求助10
10秒前
小迷糊完成签到 ,获得积分10
10秒前
whynot发布了新的文献求助10
11秒前
11秒前
刘刘发布了新的文献求助10
11秒前
Antonio完成签到,获得积分10
11秒前
一路生花发布了新的文献求助10
11秒前
12秒前
12秒前
小蘑菇应助流苏采纳,获得10
12秒前
何my完成签到 ,获得积分10
12秒前
桐桐应助艳淑采纳,获得10
13秒前
哈喽小雪完成签到,获得积分10
14秒前
研友_8yN60L完成签到,获得积分10
14秒前
14秒前
时尚冬卉完成签到,获得积分10
15秒前
内向乾完成签到,获得积分10
15秒前
NexusExplorer应助wuwu采纳,获得10
15秒前
haha完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476