清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 地质学 数学分析 哲学 地震学 程序设计语言 语言学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
荔枝发布了新的文献求助10
46秒前
丁老三完成签到 ,获得积分10
1分钟前
1分钟前
Jim发布了新的文献求助10
2分钟前
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
Unlisted发布了新的文献求助10
2分钟前
落寞的又菡完成签到,获得积分10
2分钟前
3分钟前
端庄洪纲完成签到 ,获得积分10
3分钟前
3分钟前
米修发布了新的文献求助10
3分钟前
4分钟前
米修完成签到,获得积分20
4分钟前
CodeCraft应助居家小可采纳,获得10
4分钟前
4分钟前
苗苗发布了新的文献求助10
4分钟前
5分钟前
苗苗完成签到 ,获得积分10
5分钟前
loathebm发布了新的文献求助10
5分钟前
NexusExplorer应助loathebm采纳,获得10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
5分钟前
5分钟前
居家小可发布了新的文献求助10
6分钟前
我睡觉的时候不困完成签到 ,获得积分10
6分钟前
居家小可完成签到,获得积分10
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
6分钟前
不羁之魂完成签到,获得积分10
7分钟前
7分钟前
7分钟前
飞快的孱发布了新的文献求助10
7分钟前
CYT完成签到,获得积分10
8分钟前
chenlc971125完成签到 ,获得积分10
9分钟前
科研通AI5应助义气的含烟采纳,获得10
9分钟前
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108