Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 地质学 数学分析 哲学 地震学 程序设计语言 语言学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助宝贝采纳,获得10
刚刚
金晶发布了新的文献求助10
1秒前
1秒前
Peter完成签到,获得积分20
1秒前
丰知然应助zhengke924采纳,获得10
1秒前
飘逸晓博完成签到 ,获得积分20
2秒前
coco完成签到 ,获得积分10
2秒前
科研菜鸟发布了新的文献求助10
2秒前
2秒前
大气的乌冬面完成签到,获得积分10
2秒前
2秒前
RUSTY完成签到,获得积分20
2秒前
田様应助11采纳,获得10
3秒前
3秒前
3秒前
3秒前
芝士完成签到,获得积分10
3秒前
pqy发布了新的文献求助10
3秒前
脆脆鲨完成签到,获得积分10
4秒前
4秒前
文安完成签到,获得积分10
4秒前
微笑如冰完成签到,获得积分10
5秒前
luo给luo的求助进行了留言
5秒前
晨曦发布了新的文献求助10
5秒前
5秒前
大方小白发布了新的文献求助10
5秒前
细腻沅发布了新的文献求助10
5秒前
科研通AI5应助FFF采纳,获得10
6秒前
6秒前
茉莉完成签到,获得积分10
6秒前
今今发布了新的文献求助10
7秒前
追寻的筝发布了新的文献求助10
7秒前
请叫我风吹麦浪应助Ll采纳,获得10
7秒前
Keming完成签到,获得积分10
7秒前
害羞聋五发布了新的文献求助10
8秒前
tulip发布了新的文献求助10
8秒前
8秒前
8秒前
嘟嘟发布了新的文献求助10
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762