Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 地质学 数学分析 哲学 地震学 程序设计语言 语言学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
传奇3应助拘留所采纳,获得10
2秒前
小爱同学发布了新的文献求助10
2秒前
怜然完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
星辰大海应助民网采纳,获得10
6秒前
咋咋发布了新的文献求助10
6秒前
顾矜应助mxy采纳,获得10
7秒前
飘逸的狗发布了新的文献求助10
7秒前
852应助zz桓桓采纳,获得10
8秒前
9秒前
Ava应助主手的麻衣采纳,获得10
10秒前
11秒前
12秒前
现代书雪发布了新的文献求助10
12秒前
勇敢牛牛发布了新的文献求助10
12秒前
酌鹿发布了新的文献求助10
12秒前
Ziven完成签到,获得积分10
12秒前
13秒前
天真三问给天真三问的求助进行了留言
13秒前
wys3712发布了新的文献求助20
13秒前
14秒前
HYLynn完成签到,获得积分10
14秒前
Orange应助天真枫采纳,获得10
15秒前
15秒前
MchemG应助贝贝采纳,获得20
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
xwydx发布了新的文献求助10
17秒前
万能图书馆应助wys3712采纳,获得10
18秒前
18秒前
18秒前
解愚志给lxf_123的求助进行了留言
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213