判别式
计算机科学
人工智能
领域(数学分析)
模式识别(心理学)
特征提取
边距(机器学习)
域适应
特征(语言学)
试验数据
集合(抽象数据类型)
断层(地质)
机器学习
数据挖掘
数学
分类器(UML)
地质学
数学分析
哲学
地震学
程序设计语言
语言学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:72: 1-11
被引量:1
标识
DOI:10.1109/tim.2023.3317472
摘要
The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
科研通智能强力驱动
Strongly Powered by AbleSci AI