Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

判别式 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 特征提取 边距(机器学习) 域适应 特征(语言学) 试验数据 集合(抽象数据类型) 断层(地质) 机器学习 数据挖掘 数学 分类器(UML) 数学分析 语言学 哲学 地震学 程序设计语言 地质学
作者
Sun Kai,Xinghan Xu,Nannan Lu,Huijuan Xia,Min Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3317472
摘要

The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation methods are commonly employed to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to domain adaptation models. Firstly, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Secondly, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial domain adaptation (JDADA) is proposed in this paper. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. Additionally, we propose a new pseudo-labelling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox data set and bearing data set, and the results demonstrate its effectiveness and superiority over state-of-the-art domain adaptation methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox data set and 3.4% accuracy improvement on the bearing data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
champ发布了新的文献求助10
刚刚
1秒前
阿郑发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
luo发布了新的文献求助10
2秒前
淮安重午完成签到,获得积分10
3秒前
CJlamant发布了新的文献求助10
3秒前
4秒前
Orange应助文艺的匪采纳,获得10
4秒前
adkins发布了新的文献求助10
4秒前
5秒前
桑延发布了新的文献求助10
5秒前
6秒前
龙潭鑫完成签到,获得积分10
6秒前
彭于晏应助kuzzi采纳,获得30
7秒前
田国兵发布了新的文献求助10
7秒前
杨怡羊发布了新的文献求助10
7秒前
7秒前
7秒前
monair发布了新的文献求助10
8秒前
8秒前
mu发布了新的文献求助10
9秒前
gloval发布了新的文献求助20
9秒前
10秒前
终梦应助桃子采纳,获得10
10秒前
CJlamant完成签到,获得积分10
10秒前
10秒前
无心的慕青完成签到,获得积分10
10秒前
琳琳发布了新的文献求助10
10秒前
Tracy发布了新的文献求助10
11秒前
cryjslong发布了新的文献求助10
12秒前
幸福念柏完成签到,获得积分10
12秒前
捏捏发布了新的文献求助10
12秒前
13秒前
慕青应助sqq采纳,获得10
13秒前
14秒前
15秒前
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443045
求助须知:如何正确求助?哪些是违规求助? 4553014
关于积分的说明 14240267
捐赠科研通 4474566
什么是DOI,文献DOI怎么找? 2452011
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418682