Predicting 10-year breast cancer mortality risk in the general female population in England: a model development and validation study

乳腺癌 医学 比例危险模型 癌症 队列 人口 肿瘤科 癌症登记处 队列研究 人口学 内科学 环境卫生 社会学
作者
Ash Kieran Clift,Gary S. Collins,Simon Lord,Stavros Petrou,David Dodwell,Michael Brady,Julia Hippisley‐Cox
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (9): e571-e581 被引量:6
标识
DOI:10.1016/s2589-7500(23)00113-9
摘要

BackgroundIdentifying female individuals at highest risk of developing life-threatening breast cancers could inform novel stratified early detection and prevention strategies to reduce breast cancer mortality, rather than only considering cancer incidence. We aimed to develop a prognostic model that accurately predicts the 10-year risk of breast cancer mortality in female individuals without breast cancer at baseline.MethodsIn this model development and validation study, we used an open cohort study from the QResearch primary care database, which was linked to secondary care and national cancer and mortality registers in England, UK. The data extracted were from female individuals aged 20–90 years without previous breast cancer or ductal carcinoma in situ who entered the cohort between Jan 1, 2000, and Dec 31, 2020. The primary outcome was breast cancer-related death, which was assessed in the full dataset. Cox proportional hazards, competing risks regression, XGBoost, and neural network modelling approaches were used to predict the risk of breast cancer death within 10 years using routinely collected health-care data. Death due to causes other than breast cancer was the competing risk. Internal–external validation was used to evaluate prognostic model performance (using Harrell's C, calibration slope, and calibration in the large), performance heterogeneity, and transportability. Internal–external validation involved dataset partitioning by time period and geographical region. Decision curve analysis was used to assess clinical utility.FindingsWe identified data for 11 626 969 female individuals, with 70 095 574 person-years of follow-up. There were 142 712 (1·2%) diagnoses of breast cancer, 24 043 (0·2%) breast cancer-related deaths, and 696 106 (6·0%) deaths from other causes. Meta-analysis pooled estimates of Harrell's C were highest for the competing risks model (0·932, 95% CI 0·917–0·946). The competing risks model was well calibrated overall (slope 1·011, 95% CI 0·978–1·044), and across different ethnic groups. Decision curve analysis suggested favourable clinical utility across all age groups. The XGBoost and neural network models had variable performance across age and ethnic groups.InterpretationA model that predicts the combined risk of developing and then dying from breast cancer at the population level could inform stratified screening or chemoprevention strategies. Further evaluation of the competing risks model should comprise effect and health economic assessment of model-informed strategies.FundingCancer Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
xiaozeng发布了新的文献求助30
1秒前
顺心的千易完成签到,获得积分10
1秒前
桐桐应助时尚问安采纳,获得10
2秒前
wang完成签到 ,获得积分10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得50
6秒前
Owen应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得500
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
醉熏的似狮完成签到,获得积分20
8秒前
9秒前
9秒前
秃头医生发布了新的文献求助10
9秒前
李震完成签到,获得积分10
11秒前
kento发布了新的文献求助50
11秒前
顾矜应助复杂真采纳,获得10
14秒前
hmx完成签到,获得积分10
14秒前
15秒前
CHyaa发布了新的文献求助30
16秒前
koitoyu完成签到,获得积分10
16秒前
文艺不凡完成签到,获得积分10
17秒前
dfghjkl完成签到 ,获得积分10
24秒前
24秒前
kkfly完成签到,获得积分10
25秒前
25秒前
lxt发布了新的文献求助10
25秒前
lin发布了新的文献求助10
26秒前
CodeCraft应助guchenniub采纳,获得10
26秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176694
求助须知:如何正确求助?哪些是违规求助? 2828018
关于积分的说明 7964322
捐赠科研通 2488898
什么是DOI,文献DOI怎么找? 1326743
科研通“疑难数据库(出版商)”最低求助积分说明 635035
版权声明 602837