External validation of a predictive model for reintubation after cardiac surgery: A retrospective, observational study

布里氏评分 医学 接收机工作特性 统计的 判别式 统计 一致性 急诊医学 内科学 计算机科学 人工智能 数学
作者
Robert E. Freundlich,Jacob C. Clifton,Richard H. Epstein,Pratik P. Pandharipande,Tristan Grogan,Ryan Moore,Daniel W. Byrne,Michael Fabbro,Ira Hofer
出处
期刊:Journal of Clinical Anesthesia [Elsevier]
卷期号:92: 111295-111295 被引量:1
标识
DOI:10.1016/j.jclinane.2023.111295
摘要

Explore validation of a model to predict patients' risk of failing extubation, to help providers make informed, data-driven decisions regarding the optimal timing of extubation. We performed temporal, geographic, and domain validations of a model for the risk of reintubation after cardiac surgery by assessing its performance on data sets from three academic medical centers, with temporal validation using data from the institution where the model was developed. Three academic medical centers in the United States. Adult patients arriving in the cardiac intensive care unit with an endotracheal tube in place after cardiac surgery. Receiver operating characteristic (ROC) curves and concordance statistics were used as measures of discriminative ability, and calibration curves and Brier scores were used to assess the model's predictive ability. Temporal validation was performed in 1642 patients with a reintubation rate of 4.8%, with the model demonstrating strong discrimination (optimism-corrected c-statistic 0.77) and low predictive error (Brier score 0.044) but poor model precision and recall (Optimal F1 score 0.29). Combined domain and geographic validation were performed in 2041 patients with a reintubation rate of 1.5%. The model displayed solid discriminative ability (optimism-corrected c-statistic = 0.73) and low predictive error (Brier score = 0.0149) but low precision and recall (Optimal F1 score = 0.13). Geographic validation was performed in 2489 patients with a reintubation rate of 1.6%, with the model displaying good discrimination (optimism-corrected c-statistic = 0.71) and predictive error (Brier score = 0.0152) but poor precision and recall (Optimal F1 score = 0.13). The reintubation model displayed strong discriminative ability and low predictive error within each validation cohort. Future work is needed to explore how to optimize models before local implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywy完成签到,获得积分20
1秒前
姽婳wy发布了新的文献求助10
1秒前
2秒前
2秒前
旭龙完成签到,获得积分10
4秒前
Mia发布了新的文献求助10
4秒前
龙仔完成签到 ,获得积分10
5秒前
Jasper应助lvqlin666采纳,获得10
5秒前
李政浩发布了新的文献求助10
7秒前
万柳书院小书童完成签到 ,获得积分10
11秒前
11秒前
liaodanling完成签到,获得积分10
12秒前
CipherSage应助yomi采纳,获得10
12秒前
12秒前
13秒前
deng发布了新的文献求助10
14秒前
玛卡巴卡发布了新的文献求助10
14秒前
DD完成签到,获得积分10
14秒前
qiong发布了新的文献求助10
15秒前
ezekiet完成签到 ,获得积分10
17秒前
华仔应助Mia采纳,获得10
17秒前
林深完成签到,获得积分10
17秒前
jwC发布了新的文献求助10
17秒前
Hsxbk.发布了新的文献求助10
18秒前
7777777发布了新的文献求助10
19秒前
21秒前
思源应助小树采纳,获得10
22秒前
23秒前
NexusExplorer应助Hsxbk.采纳,获得10
24秒前
liaodanling发布了新的文献求助10
24秒前
yomi发布了新的文献求助10
25秒前
出其东门发布了新的文献求助20
25秒前
SciGPT应助jwC采纳,获得10
25秒前
26秒前
28秒前
lc发布了新的文献求助10
28秒前
30秒前
qiong完成签到,获得积分10
31秒前
31秒前
阿健完成签到,获得积分10
31秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Hopemont Capacity Assessment Interview manual and scoring guide 600
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422550
求助须知:如何正确求助?哪些是违规求助? 3022763
关于积分的说明 8902757
捐赠科研通 2710307
什么是DOI,文献DOI怎么找? 1486376
科研通“疑难数据库(出版商)”最低求助积分说明 687051
邀请新用户注册赠送积分活动 682285