图像(数学)
计算机科学
图像复原
骨干网
人工智能
数学
图像处理
计算机网络
作者
Xiangyu Chen,Zheyuan Li,Yuandong Pu,Yihao Liu,Jiantao Zhou,Yu Qiao,Chao Dong
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2310.11881
摘要
Despite the significant progress made by deep models in various image restoration tasks, existing image restoration networks still face challenges in terms of task generality. An intuitive manifestation is that networks which excel in certain tasks often fail to deliver satisfactory results in others. To illustrate this point, we select five representative networks and conduct a comparative study on five classic image restoration tasks. First, we provide a detailed explanation of the characteristics of different image restoration tasks and backbone networks. Following this, we present the benchmark results and analyze the reasons behind the performance disparity of different models across various tasks. Drawing from this comparative study, we propose that a general image restoration backbone network needs to meet the functional requirements of diverse tasks. Based on this principle, we design a new general image restoration backbone network, X-Restormer. Extensive experiments demonstrate that X-Restormer possesses good task generality and achieves state-of-the-art performance across a variety of tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI