SRCBTFusion-Net: An Efficient Fusion Architecture via Stacked Residual Convolution Blocks and Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 变压器 残余物 模式识别(心理学) 编码器 解码方法 计算机视觉 算法 电压 物理 量子力学 操作系统
作者
Junsong Chen,Jizheng Yi,Aibin Chen,Hui Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2023.3336689
摘要

Convolutional neural network (CNN) and Transformer-based self-attention models have their advantages in extracting local information and global semantic information, and it is a trend to design a model combining stacked residual convolution blocks (SRCB) and Transformer. How to efficiently integrate the two mechanisms to improve the segmentation effect of remote sensing (RS) images is an urgent problem to be solved. An efficient fusion via SRCB and Transformer (SRCBTFusion-Net) is proposed as a new semantic segmentation architecture for RS images. The SRCBTFusion-Net adopts an encoder-decoder structure, and the Transformer is embedded into SRCB to form a double coding structure, then the coding features are up-sampled and fused with multi-scale features of SRCB to form a decoding structure. Firstly, a semantic information enhancement module (SIEM) is proposed to get global clues for enhancing deep semantic information. Subsequently, the relationship guidance module (RGM) is incorporated to re-encode the decoder's upsampled feature maps, enhancing the edge segmentation performance. Secondly, a multipath atrous self-attention module (MASM) is developed to enhance the effective selection and weighting of low-level features, effectively reducing the potential confusion introduced by the skip connections between low-level and high-level features. Finally, a multi-scale feature aggregation module (MFAM) is developed to enhance the extraction of semantic and contextual information, thus alleviating the loss of image feature information and improving the ability to identify similar categories. The proposed SRCBTFusion-Net's performance on the Vaihingen and Potsdam datasets is superior to the state-of-the-art methods. The code will be freely available at https://github.com/js257/SRCBTFusion-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
焦锟发布了新的文献求助10
刚刚
小林家的绒绒兔完成签到,获得积分10
1秒前
汛钥发布了新的文献求助10
2秒前
传奇3应助JJ采纳,获得10
3秒前
keke发布了新的文献求助10
4秒前
zhangpeng发布了新的文献求助10
4秒前
大胆的致远完成签到 ,获得积分10
4秒前
科目三应助小莫采纳,获得10
4秒前
嗜血啊阳完成签到,获得积分10
4秒前
朴子完成签到 ,获得积分10
4秒前
杨江萍完成签到,获得积分10
4秒前
4秒前
5秒前
Jiarong1完成签到,获得积分10
6秒前
淡抹青春完成签到,获得积分10
7秒前
fzzf完成签到,获得积分10
8秒前
9秒前
keke完成签到,获得积分10
9秒前
CC发布了新的文献求助10
10秒前
CHSLN发布了新的文献求助10
10秒前
13秒前
rrr完成签到,获得积分10
13秒前
FashionBoy应助JJ采纳,获得10
14秒前
14秒前
番茄人完成签到,获得积分10
14秒前
一年半太久只争朝夕完成签到,获得积分10
15秒前
15秒前
Able应助宋亚珍采纳,获得10
16秒前
zxc完成签到,获得积分10
17秒前
lshl2000完成签到,获得积分10
17秒前
YamDaamCaa应助ecnuZhao采纳,获得30
17秒前
现代的南风完成签到 ,获得积分10
18秒前
loong完成签到,获得积分10
19秒前
公子我完成签到,获得积分20
19秒前
重要的一凡完成签到,获得积分10
19秒前
20秒前
CipherSage应助Zeno采纳,获得10
20秒前
aaa完成签到,获得积分10
21秒前
暴富完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963542
求助须知:如何正确求助?哪些是违规求助? 3509469
关于积分的说明 11146884
捐赠科研通 3242801
什么是DOI,文献DOI怎么找? 1791973
邀请新用户注册赠送积分活动 873323
科研通“疑难数据库(出版商)”最低求助积分说明 803712