SRCBTFusion-Net: An Efficient Fusion Architecture via Stacked Residual Convolution Blocks and Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 变压器 残余物 模式识别(心理学) 编码器 解码方法 计算机视觉 算法 量子力学 操作系统 物理 电压
作者
Junsong Chen,Jizheng Yi,Aibin Chen,Hui Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2023.3336689
摘要

Convolutional neural network (CNN) and Transformer-based self-attention models have their advantages in extracting local information and global semantic information, and it is a trend to design a model combining stacked residual convolution blocks (SRCB) and Transformer. How to efficiently integrate the two mechanisms to improve the segmentation effect of remote sensing (RS) images is an urgent problem to be solved. An efficient fusion via SRCB and Transformer (SRCBTFusion-Net) is proposed as a new semantic segmentation architecture for RS images. The SRCBTFusion-Net adopts an encoder-decoder structure, and the Transformer is embedded into SRCB to form a double coding structure, then the coding features are up-sampled and fused with multi-scale features of SRCB to form a decoding structure. Firstly, a semantic information enhancement module (SIEM) is proposed to get global clues for enhancing deep semantic information. Subsequently, the relationship guidance module (RGM) is incorporated to re-encode the decoder's upsampled feature maps, enhancing the edge segmentation performance. Secondly, a multipath atrous self-attention module (MASM) is developed to enhance the effective selection and weighting of low-level features, effectively reducing the potential confusion introduced by the skip connections between low-level and high-level features. Finally, a multi-scale feature aggregation module (MFAM) is developed to enhance the extraction of semantic and contextual information, thus alleviating the loss of image feature information and improving the ability to identify similar categories. The proposed SRCBTFusion-Net's performance on the Vaihingen and Potsdam datasets is superior to the state-of-the-art methods. The code will be freely available at https://github.com/js257/SRCBTFusion-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的豁完成签到,获得积分10
刚刚
1秒前
123稻稻人完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助研友_dl采纳,获得10
3秒前
大Doctor陈发布了新的文献求助80
3秒前
zxcharm完成签到,获得积分10
4秒前
笨笨鲜花完成签到,获得积分10
4秒前
星黛Lu完成签到,获得积分10
4秒前
社牛小柯完成签到,获得积分10
4秒前
含蓄的凝芙完成签到,获得积分20
4秒前
xing完成签到,获得积分10
4秒前
缓慢修杰完成签到,获得积分10
5秒前
5秒前
zdl完成签到,获得积分10
6秒前
沐杨完成签到,获得积分10
7秒前
ren完成签到,获得积分10
7秒前
小许发布了新的文献求助10
7秒前
科研通AI6.1应助基础题采纳,获得10
7秒前
慕青应助晚风采纳,获得10
8秒前
9秒前
yon发布了新的文献求助10
10秒前
ZS完成签到,获得积分10
10秒前
吴小利完成签到,获得积分10
10秒前
李子昂完成签到,获得积分10
10秒前
10秒前
媛念源完成签到 ,获得积分10
10秒前
小蘑菇应助含蓄的凝芙采纳,获得10
11秒前
SOL完成签到,获得积分10
12秒前
12秒前
酷酷的城完成签到,获得积分10
13秒前
向钱看完成签到 ,获得积分10
13秒前
HAHAHA完成签到,获得积分10
13秒前
sober完成签到,获得积分10
14秒前
character577完成签到,获得积分10
14秒前
脑洞疼应助Nimnse采纳,获得30
15秒前
CHENYINGYING发布了新的文献求助10
15秒前
丘比特应助wangli采纳,获得10
16秒前
精明芷巧完成签到 ,获得积分10
16秒前
didi完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957