SRCBTFusion-Net: An Efficient Fusion Architecture via Stacked Residual Convolution Blocks and Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 变压器 残余物 模式识别(心理学) 编码器 解码方法 计算机视觉 算法 量子力学 操作系统 物理 电压
作者
Junsong Chen,Jizheng Yi,Aibin Chen,Hui Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:3
标识
DOI:10.1109/tgrs.2023.3336689
摘要

Convolutional neural network (CNN) and Transformer-based self-attention models have their advantages in extracting local information and global semantic information, and it is a trend to design a model combining stacked residual convolution blocks (SRCB) and Transformer. How to efficiently integrate the two mechanisms to improve the segmentation effect of remote sensing (RS) images is an urgent problem to be solved. An efficient fusion via SRCB and Transformer (SRCBTFusion-Net) is proposed as a new semantic segmentation architecture for RS images. The SRCBTFusion-Net adopts an encoder-decoder structure, and the Transformer is embedded into SRCB to form a double coding structure, then the coding features are up-sampled and fused with multi-scale features of SRCB to form a decoding structure. Firstly, a semantic information enhancement module (SIEM) is proposed to get global clues for enhancing deep semantic information. Subsequently, the relationship guidance module (RGM) is incorporated to re-encode the decoder's upsampled feature maps, enhancing the edge segmentation performance. Secondly, a multipath atrous self-attention module (MASM) is developed to enhance the effective selection and weighting of low-level features, effectively reducing the potential confusion introduced by the skip connections between low-level and high-level features. Finally, a multi-scale feature aggregation module (MFAM) is developed to enhance the extraction of semantic and contextual information, thus alleviating the loss of image feature information and improving the ability to identify similar categories. The proposed SRCBTFusion-Net's performance on the Vaihingen and Potsdam datasets is superior to the state-of-the-art methods. The code will be freely available at https://github.com/js257/SRCBTFusion-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Stephen完成签到,获得积分10
2秒前
123465完成签到,获得积分10
3秒前
毛豆应助7777777采纳,获得10
3秒前
Andy发布了新的文献求助10
3秒前
LiuHK发布了新的文献求助10
4秒前
wh完成签到,获得积分10
5秒前
6秒前
烂漫的千萍关注了科研通微信公众号
6秒前
6秒前
南方姑娘在南方完成签到,获得积分20
6秒前
6秒前
乐乐应助dengqin采纳,获得10
7秒前
英俊的铭应助薄荷味采纳,获得10
8秒前
8秒前
CZJ完成签到,获得积分10
9秒前
9秒前
张永乐发布了新的文献求助10
11秒前
清秀聪健发布了新的文献求助10
11秒前
12秒前
12秒前
耿耿完成签到,获得积分10
13秒前
777发布了新的文献求助10
14秒前
疯狂的大山完成签到,获得积分10
15秒前
josui发布了新的文献求助10
15秒前
tingk发布了新的文献求助10
15秒前
bkagyin应助过时的小蘑菇采纳,获得10
15秒前
张永乐完成签到,获得积分10
15秒前
15秒前
4000发布了新的文献求助10
16秒前
期望应助曾小莹采纳,获得10
16秒前
16秒前
16秒前
诚心小鸭子应助从容前行采纳,获得10
17秒前
17秒前
清秀聪健完成签到,获得积分10
17秒前
19秒前
dengqin发布了新的文献求助10
20秒前
Andy完成签到,获得积分20
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304792
求助须知:如何正确求助?哪些是违规求助? 2938738
关于积分的说明 8489795
捐赠科研通 2613236
什么是DOI,文献DOI怎么找? 1427209
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557