Machine Learning based Intelligent System for Breast Cancer Prediction (MLISBCP)

计算机科学 机器学习 人工智能 特征选择 阿达布思 过度拟合 乳腺癌 分类器(UML) 集成学习 数据挖掘 人工神经网络 癌症 医学 内科学
作者
Akhil Das,Saroj Kr. Biswas,Ardhendu Mandal,Arijit Bhattacharya,Saptarsi Sanyal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122673-122673 被引量:20
标识
DOI:10.1016/j.eswa.2023.122673
摘要

Risks of death from Breast Cancer (BC) are drastically rising in recent years. The diagnosis of breast cancer is time-consuming due to the limited availability of diagnostic systems such as dynamic MRI, X-rays etc. Early detection and diagnosis of breast cancer significantly impacts life expectancy as current medical technologies are not advanced enough to treat patients in later stages effectively. Even though researchers have created many expert systems for early detection of BC such as WNBC, AR + NN system, AdaBoost ELM etc., but still most expert systems frequently lack adequate handling of the class imbalance problem, proper data pre-processing, and systematic feature selection. To overcome these limitations, this work proposes an expert system named “Machine Learning Based Intelligent System for Breast Cancer Prediction (MLISBCP)” for better prediction of breast cancer using machine learning analytics. The suggested system utilises the ‘K-Means SMOTE’ oversampling method to handle the class imbalance problem and ‘Boruta’ feature selection technique to select the most relevant features of the BC dataset. To understand the effectiveness of the proposed model – MLISBCP, its performance is compared with various single classifier based models, ensemble models and various models present in literature in terms of performance metrics- accuracy, precision, recall, F1-score and RoC AUC Score. The results reveal that the MLISBCP obtained the highest accuracy of 97.53% with respect to existing models present in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张家源发布了新的文献求助10
刚刚
叫滚滚发布了新的文献求助10
2秒前
lunjianchi发布了新的文献求助10
2秒前
充电宝应助风华正茂采纳,获得10
2秒前
完美世界应助boyue采纳,获得10
5秒前
科目三应助冷静的奇迹采纳,获得10
6秒前
李健应助胡图图采纳,获得10
7秒前
8秒前
852应助反义词采纳,获得10
9秒前
10秒前
10秒前
666发布了新的文献求助10
11秒前
唐唐发布了新的文献求助10
11秒前
12秒前
蓦然回首完成签到,获得积分10
14秒前
思源应助123采纳,获得10
14秒前
星辰大海应助张家源采纳,获得10
14秒前
14秒前
15秒前
Liixy发布了新的文献求助10
15秒前
儒雅HR发布了新的文献求助10
16秒前
飘逸锦程完成签到 ,获得积分10
16秒前
penghaha发布了新的文献求助10
17秒前
19秒前
19秒前
风华正茂发布了新的文献求助10
19秒前
zxh656691发布了新的文献求助10
19秒前
搜集达人应助老十七采纳,获得10
20秒前
20秒前
搜集达人应助冷静的奇迹采纳,获得10
20秒前
儒雅HR完成签到,获得积分10
22秒前
xtt发布了新的文献求助10
22秒前
penghaha完成签到,获得积分10
22秒前
威武鞅完成签到,获得积分10
24秒前
24秒前
24秒前
redking发布了新的文献求助30
25秒前
轻松的惜芹应助lunjianchi采纳,获得10
26秒前
科研通AI5应助Liixy采纳,获得10
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517