Machine Learning Based Intelligent System for Breast Cancer Prediction (MLISBCP)

计算机科学 机器学习 人工智能 特征选择 阿达布思 过度拟合 乳腺癌 分类器(UML) 集成学习 数据挖掘 人工神经网络 癌症 医学 内科学
作者
Akhil Das,Saroj Biswas,Ardhendu Mandal,Arijit Bhattacharya,Saptarsi Sanyal
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:242: 122673-122673
标识
DOI:10.1016/j.eswa.2023.122673
摘要

Risks of death from Breast Cancer (BC) are drastically rising in recent years. The diagnosis of breast cancer is time-consuming due to the limited availability of diagnostic systems such as dynamic MRI, X-rays etc. Early detection and diagnosis of breast cancer significantly impacts life expectancy as current medical technologies are not advanced enough to treat patients in later stages effectively. Even though researchers have created many expert systems for early detection of BC such as WNBC, AR + NN system, AdaBoost ELM etc., but still most expert systems frequently lack adequate handling of the class imbalance problem, proper data pre-processing, and systematic feature selection. To overcome these limitations, this work proposes an expert system named “Machine Learning Based Intelligent System for Breast Cancer Prediction (MLISBCP)” for better prediction of breast cancer using machine learning analytics. The suggested system utilises the ‘K-Means SMOTE’ oversampling method to handle the class imbalance problem and ‘Boruta’ feature selection technique to select the most relevant features of the BC dataset. To understand the effectiveness of the proposed model – MLISBCP, its performance is compared with various single classifier based models, ensemble models and various models present in literature in terms of performance metrics- accuracy, precision, recall, F1-score and RoC AUC Score. The results reveal that the MLISBCP obtained the highest accuracy of 97.53% with respect to existing models present in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Shell完成签到,获得积分10
1秒前
巫马笑白发布了新的文献求助10
2秒前
天天快乐应助zilhua采纳,获得10
3秒前
4秒前
东病房楼发布了新的文献求助10
4秒前
超级丸子发布了新的文献求助10
4秒前
5秒前
mera发布了新的文献求助10
5秒前
zcx发布了新的文献求助10
6秒前
优雅的纸鹤应助素和姣姣采纳,获得10
6秒前
7秒前
所所应助阿巴阿巴采纳,获得30
8秒前
李健的小迷弟应助Aubrey采纳,获得10
8秒前
不将就1345应助若眠采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
qipupu222完成签到 ,获得积分10
10秒前
10秒前
咕噜发布了新的文献求助30
10秒前
归海神刀发布了新的文献求助10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
xjcy应助科研通管家采纳,获得10
10秒前
张益萌应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
英姑应助duoduo采纳,获得10
11秒前
第一号加菲猫完成签到,获得积分10
11秒前
毅可爱完成签到,获得积分10
11秒前
张大大完成签到,获得积分10
12秒前
13秒前
老六完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301509
求助须知:如何正确求助?哪些是违规求助? 2936202
关于积分的说明 8476514
捐赠科研通 2609958
什么是DOI,文献DOI怎么找? 1424957
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646257