清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SemiBuildingChange: A Semi-Supervised High-Resolution Remote Sensing Image Building Change Detection Method With a Pseudo Bitemporal Data Generator

计算机科学 变更检测 稳健性(进化) 人工智能 时态数据库 数据一致性 数据挖掘 模式识别(心理学) 遥感 计算机视觉 数据库 地质学 生物化学 化学 基因
作者
Chengzhe Sun,Hao Chen,Chun Du,Ning Jing
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:7
标识
DOI:10.1109/tgrs.2023.3321637
摘要

Remote sensing (RS) images change detection (CD) aims to obtain change information of the target area between multi-temporal RS images. With the modernization of cities, building change detection (BCD) plays a pivotal role in land resource planning, smart city construction and natural disaster assessment, and it is a typical application field of change detection task. Recently, deep learning based methods have shown their superiority in RS image change detection. However, the performance of the existing supervised change detection methods relies heavily on a large amount of high quality annotated bi-temporal RS image as training data, which is usually hard to obtain in practice. To address this issue, a semi-supervised BCD method using a pseudo bi-temporal data generator with consistency regularization was proposed. This method only needs a very small amount of single-temporal RS images with building extraction labels as labeled data. Firstly, with the help of the pseudo bi-temporal data generator, the model can generate a large number of pseudo bi-temporal images with CD labels from a small number of single-temporal images and corresponding building extraction labels automatically, which greatly augments the labeled data set for CD model training. Then, we proposed an error-prone data enhancement fine-tuning strategy to improve the learning effect of the proposed model to these synthesized training data. Finally, we enhance the robustness of the model by forcing the model to make consistent predictions on the images before and after perturbations. Extensive experimental results demonstrate that our method can effectively improve the BCD performance of the model even if labeled data are scare, and outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
幽拟发布了新的文献求助10
38秒前
44秒前
Qing完成签到 ,获得积分10
2分钟前
2分钟前
ytsa完成签到,获得积分10
3分钟前
Wei发布了新的文献求助10
3分钟前
3分钟前
易研顶针完成签到,获得积分20
3分钟前
易研顶针发布了新的文献求助10
3分钟前
幽拟完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
HY发布了新的文献求助10
5分钟前
5分钟前
LZQ完成签到,获得积分0
6分钟前
十七完成签到,获得积分10
6分钟前
竹青完成签到 ,获得积分10
8分钟前
8分钟前
Liu丰发布了新的文献求助10
8分钟前
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
臭鱼烂虾完成签到,获得积分10
9分钟前
念念妈咪完成签到 ,获得积分10
9分钟前
wanci应助CY采纳,获得10
10分钟前
SDNUDRUG完成签到,获得积分10
10分钟前
10分钟前
科目三应助科研通管家采纳,获得10
11分钟前
NagatoYuki完成签到,获得积分10
11分钟前
gwbk完成签到,获得积分10
11分钟前
12分钟前
13分钟前
科研通AI5应助科研通管家采纳,获得10
13分钟前
suyi完成签到,获得积分10
14分钟前
香蕉觅云应助suyi采纳,获得10
14分钟前
14分钟前
CY发布了新的文献求助10
14分钟前
woxinyouyou完成签到,获得积分0
14分钟前
14分钟前
14分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761004
求助须知:如何正确求助?哪些是违规求助? 3304873
关于积分的说明 10131195
捐赠科研通 3018754
什么是DOI,文献DOI怎么找? 1657824
邀请新用户注册赠送积分活动 791708
科研通“疑难数据库(出版商)”最低求助积分说明 754552