物理
标量场
时空
Schwarzschild度量
标量(数学)
爱因斯坦
数学物理
公制(单位)
经典力学
万有引力
施瓦西半径
理论物理学
广义相对论
几何学
量子力学
数学
经济
运营管理
作者
Ming 明 Zhang 张,Sheng-Yuan 盛源 Li 李,De-Cheng 德成 Zou 邹,Chao-Ming 晁铭 Zhang 张
出处
期刊:Chinese Physics C
[IOP Publishing]
日期:2023-09-25
卷期号:47 (12): 125102-125102
标识
DOI:10.1088/1674-1137/acfcb0
摘要
Abstract We consider Einstein-Weyl gravity with a minimally coupled scalar field in four dimensional spacetime. Using the minimal geometric deformation (MGD) approach, we split the highly nonlinear coupled field equations into two subsystems that describe the background geometry and scalar field source, respectively. By considering the Schwarzschild-AdS metric as background geometry, we derive analytical approximate solutions of the scalar field and deformation metric functions using the homotopy analysis method (HAM), providing their analytical approximations to fourth order. Moreover, we discuss the accuracy of the analytical approximations, showing they are sufficiently accurate throughout the exterior spacetime.
科研通智能强力驱动
Strongly Powered by AbleSci AI