摘要
Journal of the Science of Food and AgricultureVolume 104, Issue 4 p. 2458-2466 Research Article Assessment of calcium alginate gels as wall materials for encapsulation systems Jesica Daiana Oroná, Jesica Daiana Oroná Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, ArgentinaSearch for more papers by this authorSusana Elizabeth Zorrilla, Susana Elizabeth Zorrilla Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, ArgentinaSearch for more papers by this authorJuan Manuel Peralta, Corresponding Author Juan Manuel Peralta [email protected] orcid.org/0000-0003-2114-7039 Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, Argentina Correspondence to: JM Peralta, Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral – CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina. E-mail: [email protected]Search for more papers by this author Jesica Daiana Oroná, Jesica Daiana Oroná Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, ArgentinaSearch for more papers by this authorSusana Elizabeth Zorrilla, Susana Elizabeth Zorrilla Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, ArgentinaSearch for more papers by this authorJuan Manuel Peralta, Corresponding Author Juan Manuel Peralta [email protected] orcid.org/0000-0003-2114-7039 Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–CONICET, Santa Fe, Argentina Correspondence to: JM Peralta, Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral – CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina. E-mail: [email protected]Search for more papers by this author First published: 17 November 2023 https://doi.org/10.1002/jsfa.13131Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract BACKGROUND Calcium alginate gels are widely used to encapsulate active compounds. Some characteristic parameters of these gels are necessary to describe the release of active compounds through mechanistic mathematical models. In this work, transport and kinetics properties of calcium alginate gels were determined through simple experimental techniques. RESULTS The weight-average molecular weight ( M ¯ w = 192 × 103 Da) and the fraction of residues of α-l-guluronic acid ( F G = 0.356) of sodium alginate were determined by capillary viscometry and 1H-nuclear magnetic resonance at 25 °C, respectively. Considering the half egg-box model, both values were used to estimate the molecular weight of calcium alginate as M g = 2.02 × 105 Da. An effective diffusion coefficient of water ( D eff , w = 2.256 × 10−9 m2 s−1) in calcium alginate was determined using a diffusion cell at 37 °C. Finally, a kinetics constant of depolymerization ( k m = 9.72 × 10−9 m3 mol−1 s−1) of calcium alginate was obtained considering dissolution of calcium to a medium under intestinal conditions. CONCLUSION The experimental techniques used are simple and easily reproducible. The obtained values may be useful in the design, production, and optimization of the alginate-based delivery systems that require specific release kinetics of the encapsulated active compounds. © 2023 Society of Chemical Industry. CONFLICT OF INTEREST The authors declare no conflicts of interest. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description jsfa13131-sup-0001-supinfo.docxWord 2007 document , 557.3 KB Data S1. Supporting information. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1Bannikova A, Evteev A, Pankin K, Evdokimov I and Kasapis S, Microencapsulation of fish oil with alginate: in-vitro evaluation and controlled release. LWT–Food Sci Technol 90: 310–315 (2018). 10.1016/j.lwt.2017.12.045 CASWeb of Science®Google Scholar 2Li D, Wei Z and Xue C, Alginate-based delivery systems for food bioactive ingredients: an overview of recent advances and future trends. Compr Rev Food Sci Food Saf 20: 5345–5369 (2021). 10.1111/1541-4337.12840 CASPubMedWeb of Science®Google Scholar 3Essifi K, Brahmi M, Berraaouan D, Ed-Daoui A, El Bachiri A, Fauconnier M-L et al., Influence of sodium alginate concentration on microcapsules properties foreseeing the protection and controlled release of bioactive substances. J Chem 2021: 1–13 (2021). 10.1155/2021/5531479 Web of Science®Google Scholar 4Oroná JD, Niizawa I, Espinaco BY, Sihufe GA, Zorrilla SE and Peralta JM, Mathematical modeling of the release of food active compounds from viscoelastic matrices. J Food Eng 288:110240 (2021). 10.1016/j.jfoodeng.2020.110240 CASWeb of Science®Google Scholar 5Martins E, Poncelet D, Rodrigues RC and Renard D, Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J Microencapsul 34: 754–771 (2017). 10.1080/02652048.2017.1403495 CASPubMedWeb of Science®Google Scholar 6Braschler T, Valero A, Colella L, Pataky K, Brugger J and Renaud P, Link between alginate reaction front propagation and general reaction diffusion theory. Anal Chem 83: 2234–2242 (2011). 10.1021/ac103118r CASPubMedWeb of Science®Google Scholar 7Djabourov M, Nishinari K and Ross-Murphy SB, Physical Gels from Biological and Synthetic Polymers. Cambridge University Press, Cambridge (2013). 10.1017/CBO9781139024136 Google Scholar 8da Silva TL, Vidart JMM, da Silva MG, Gimenes ML and Vieira MGA, Alginate and sericin: environmental and pharmaceutical applications, in Biological Activities and Application of Marine Polysaccharides, ed. by EA Shalaby. London, InTech Open, pp. 57–85 (2017). 10.5772/65257 Google Scholar 9Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y and Okano T, Effect of Ca2+−alginate gel dissolution on release of dextran with different molecular weights. J Control Release 58: 21–28 (1999). 10.1016/S0168-3659(98)00141-2 CASPubMedWeb of Science®Google Scholar 10Duez JM, Mestdagh M, Demeure R, Goudemant JF, Hills BP and Godward J, NMR studies of calcium-induced alginate gelation. Part I—MRI tests of gelation models. Magn Reson Chem 38: 324–330 (2000). 10.1002/1097-458X(200005)38:5<324::AID-MRC646>3.0.CO;2-1 CASWeb of Science®Google Scholar 11Kulicke WM and Clasen C, Viscosimetry of Polymers and Polyelectrolytes. Springer Laboratory, Springer Science & Business Media, Berlin (2004). 10.1007/978-3-662-10796-6 Google Scholar 12Vilén EM, Klinger M and Sandström C, Application of diffusion-edited NMR spectroscopy for selective suppression of water signal in the determination of monomer composition in alginates: application of diffusion-edited NMR spectroscopy. Magn Reson Chem 49: 584–591 (2011). 10.1002/mrc.2789 CASPubMedWeb of Science®Google Scholar 13Yamashita C, Freitas Moraes IC, Ferreira AG, Zanini Branco CC and Branco IG, Multi-response optimization of alginate bleaching technology extracted from brown seaweeds by an eco-friendly agent. Carbohydr Polym 251:116992 (2021). 10.1016/j.carbpol.2020.116992 CASPubMedWeb of Science®Google Scholar 14Lu W and Mays J, Dilute solution viscometry of polymers, in Molecular Characterization of Polymers, ed. by M Malik, J Mays and MR Shah. Amsterdam, Elsevier, pp. 261–280 (2021). 10.1016/B978-0-12-819768-4.00008-7 Google Scholar 15Parella T, Pulse Program Catalogue: I. 1D & 2D NMR Experiments. Bruker BioSpin GmbH, Barcelona (2006). Google Scholar 16Kerssebaum R, DOSY and Diffusion by NMR. Bruker BioSpin GmbH, Rheinstetten (2006). Google Scholar 17Varzakas T and Tzia C, Handbook of Food Processing and Engineering: Food Engineering Fundamentals. CRC Press, Taylor & Francis Group, Boca Raton (2015). Google Scholar 18Baysal SH, Alginate beads encapsulation matrix for urease and polyethyleneglycol-urease. Artif Cells Blood Substit Biotechnol 35: 457–465 (2007). 10.1080/10731190701460374 CASPubMedGoogle Scholar 19Börnhorst M and Deutschmann O, Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Prog Energy Combust Sci 87:100949 (2021). 10.1016/j.pecs.2021.100949 Web of Science®Google Scholar 20House KA and House JE, Thermodynamics of dissolution of urea in water, alcohols, and their mixtures. J Mol Liq 242: 428–432 (2017). 10.1016/j.molliq.2017.07.020 CASWeb of Science®Google Scholar 21Zorrilla SE and Rubiolo AC, A model for using the diffusion cell in the determination of multicomponent diffusion coefficients in gels or foods. Chem Eng Sci 49: 2123–2128 (1994). 10.1016/0009-2509(94)E0006-C CASWeb of Science®Google Scholar 22Djelveh G, Gros JB and Bories B, An improvement of the cell diffusion method for the rapid determination of diffusion constants in gels or foods. J Food Sci 54: 166–169 (1989). 10.1111/j.1365-2621.1989.tb08593.x CASWeb of Science®Google Scholar 23Lauverjat C, de Loubens C, Déléris I, Tréléa IC and Souchon I, Rapid determination of partition and diffusion properties for salt and aroma compounds in complex food matrices. J Food Eng 93: 407–415 (2009). 10.1016/j.jfoodeng.2009.02.003 CASWeb of Science®Google Scholar 24Voo WP, Ooi CW, Islam A, Tey BT and Chan ES, Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour. Eur Polym J 75: 343–353 (2016). 10.1016/j.eurpolymj.2015.12.029 CASWeb of Science®Google Scholar 25Rothstein SN, Federspiel WJ and Little SR, A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials 30: 1657–1664 (2009). 10.1016/j.biomaterials.2008.12.002 CASPubMedWeb of Science®Google Scholar 26Niizawa I, Espinaco BY, Zorrilla SE and Sihufe GA, Natural astaxanthin encapsulation: use of response surface methodology for the design of alginate beads. Int J Biol Macromol 121: 601–608 (2019). 10.1016/j.ijbiomac.2018.10.044 CASPubMedWeb of Science®Google Scholar 27Lopes S, Bueno L, Aguiar Júnior FD and Finkler C, Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. An Acad Bras Ciênc 89: 1601–1613 (2017). 10.1590/0001-3765201720170071 CASPubMedWeb of Science®Google Scholar 28Magarini R, Atomic Absorption. Elemental Analysis of Beer by Flame Atomic absorption Spectrometry with the pinAAcle 900 AAS. PerkinElmer Inc., Milano (2015). Google Scholar 29Montaño Moreno JJ, Palmer Pol A, Abad AS and Blasco BC, Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 25: 500–506 (2013). PubMedWeb of Science®Google Scholar 30Hermansson E, Schuster E, Lindgren L, Altskär A and Ström A, Impact of solvent quality on the network strength and structure of alginate gels. Carbohydr Polym 144: 289–296 (2016). 10.1016/j.carbpol.2016.02.069 CASPubMedWeb of Science®Google Scholar 31Benabbas R, Sanchez-Ballester NM, Bataille B, Leclercq L, Sharkawi T and Soulairol I, Structure-properties relationship in the evaluation of alginic acid functionality for tableting. AAPS PharmSciTech 21: 94 (2020). 10.1208/s12249-020-1633-3 CASPubMedWeb of Science®Google Scholar 32Fertah M, Belfkira A, Taourirte M and Brouillette F, Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10: S3707–S3714 (2017). 10.1016/j.arabjc.2014.05.003 CASWeb of Science®Google Scholar 33da Costa MP, Delpech MC, de Mello Ferreira IL, de Macedo Cruz MT, Castanharo JA and Cruz MD, Evaluation of single-point equations to determine intrinsic viscosity of sodium alginate and chitosan with high deacetylation degree. Polym Test 63: 427–433 (2017). 10.1016/j.polymertesting.2017.09.003 Web of Science®Google Scholar 34Clementi F, Mancini M and Moresi M, Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. J Food Eng 36: 51–62 (1998). 10.1016/S0260-8774(98)00042-9 Web of Science®Google Scholar 35Sperger DM, Fu S, Block LH and Munson EJ, Analysis of composition, molecular weight, and water content variations in sodium alginate using solid-state NMR spectroscopy. J Pharm Sci 100: 3441–3452 (2011). 10.1002/jps.22559 CASPubMedWeb of Science®Google Scholar 36Martinsen A, Skjåk-Bræk G, Smidsrød O, Zanetti F and Paoletti S, Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr Polym 15: 171–193 (1991). 10.1016/0144-8617(91)90031-7 CASWeb of Science®Google Scholar 37Martinsen A, Skjåk-Braek G and Smidsrød O, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33: 79–89 (1989). 10.1002/bit.260330111 CASPubMedWeb of Science®Google Scholar 38Ramos PE, Silva P, Alario MM, Pastrana LM, Teixeira JA, Cerqueira MA et al., Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll 77: 8–16 (2018). 10.1016/j.foodhyd.2017.08.031 CASWeb of Science®Google Scholar 39Grunwald P, Determination of effective diffusion coefficients–an important parameters for the efficiency of immobilized biocatalysts. Biochem Educ 17: 99–102 (1989). 10.1016/0307-4412(89)90018-6 CASWeb of Science®Google Scholar 40Kashima K and Imai M, Impact factors to regulate mass transfer characteristics of stable alginate membrane performed superior sensitivity on various organic chemicals. Procedia Eng 42: 964–977 (2012). 10.1016/j.proeng.2012.07.490 Google Scholar 41Cussler EL, Diffusion: Mass Transfer in Fluid Systems, 3rd edn. Cambridge University Press, Leiden (2009). 10.1017/CBO9780511805134 Google Scholar 42Geankoplis CJ, Procesos de transporte y operaciones unitarias, 3rd edn. Compañía Editorial Continental SA, Mexico City (1999). Google Scholar 43Estapé D, Gòdia F and Solà C, Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel. Enzyme Microb Technol 14: 396–401 (1992). 10.1016/0141-0229(92)90009-D CASPubMedWeb of Science®Google Scholar 44Chai Y, Mei LH, Lin DQ and Yao SJ, Diffusion coefficients in intrahollow calcium alginate microcapsules. J Chem Eng Data 49: 475–478 (2004). 10.1021/je034132u CASWeb of Science®Google Scholar 45Holz M, Heil SR and Sacco A, Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2: 4740–4742 (2000). 10.1039/b005319h CASWeb of Science®Google Scholar Volume104, Issue415 March 2024Pages 2458-2466 ReferencesRelatedInformation