材料科学
复合材料
芳纶
极限抗拉强度
相间
复合数
韧性
纤维
粘结强度
图层(电子)
胶粘剂
遗传学
生物
作者
Steven Mamolo,Henry A. Sodano
标识
DOI:10.1016/j.compscitech.2023.110351
摘要
Carbon fiber-reinforced polymers (CFRPs) rely on a strong interfacial bond between the reinforcing fibers and polymeric matrix to yield the high strength and toughness expected by a composite material. Poor interfacial strength leads to sub-optimal load transfer and introduces stress concentrations, which can reduce overall performance and result in catastrophic failure. Aramid nanofibers (ANFs) have shown significant promise for interfacial reinforcement in polymeric composite systems due to their high tensile strength, large specific surface area, and abundant polar functional groups. However, due to the chemically inert nature of carbon fibers, ANFs do not readily bond to their surface – thus limiting their application to CFRPs. In this work, we demonstrate that chlorination of ANFs and oxygen plasma treatment of carbon fibers enables the formation of a chlorinated ANF (Cl-ANF) interphase through chemical and physical adsorption using a simple dip-coating process, while fully preserving the tensile strength of the carbon fibers. The Cl-ANF interphase yielded a 79.8 % increase in interfacial shear strength and a 33.7 % increase in short beam strength. By enhancing the interfacial bond between fiber and matrix without degradation of the fiber's tensile strength, this method provides a rapid and reliable process to improve the mechanical properties of CFRP composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI