Large-Scale and Knowledge-Based Dynamic Multiobjective Optimization for MSWI Process Using Adaptive Competitive Swarm Optimization

多目标优化 计算机科学 过程(计算) 氮氧化物 最优化问题 数学优化 燃烧 数学 机器学习 化学 算法 操作系统 有机化学
作者
Weimin Huang,Haixu Ding,Junfei Qiao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 379-390 被引量:8
标识
DOI:10.1109/tsmc.2023.3308922
摘要

Municipal solid waste incineration (MSWI) process is a complex industrial process with strong nonlinearity. It is a challenge to build a model for the MSWI process and carry out the corresponding optimization works. To solve this problem, the multiobjective optimization studies are conducted for both modeling and concerned indexes of the MSWI process, including the nitrogen oxides (NOx) emissions and the combustion efficiency (CE). First, a data-driven-based multiple-input multiple-output model is established for the NOx emissions and the CE of the MSWI process based on Takagi–Sugeno–Kang fuzzy neural network. Second, an adaptive large-scale multiobjective competitive swarm optimization (ALMOCSO) algorithm is designed for solving the multiobjective optimization problems (MOPs) of the MSWI process. A comprehensive evaluation system is proposed to complete the optimization foundation, and an adaptive scheme and multistrategy learning are proposed to improve the optimization effect of the ALMOCSO algorithm in solving complex MOPs. Then, a Pareto optimal set obtained from massive historical data is utilized as optimization reference to realize the dynamic multiobjective optimization for the NOx emissions and the CE of the MSWI process. Finally, the feasibility and effectiveness of the proposed methodology for optimizing the MSWI process are confirmed by the experiments using the data collected from a real MSWI plant. The results indicate that the modeling accuracy is satisfactory, and the CE is improved over 10% and the reduction of the NOx emissions is achieved 15.58%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alex发布了新的文献求助10
1秒前
1秒前
LaTeXer应助隐形夕阳采纳,获得50
1秒前
lw发布了新的文献求助10
2秒前
2秒前
英姑应助Janusfaces采纳,获得10
2秒前
2秒前
plasmid完成签到,获得积分10
3秒前
Ava应助咕噜咕噜咕嘟咕嘟采纳,获得10
3秒前
4秒前
SHAO应助一块司康饼采纳,获得100
4秒前
嗯哼发布了新的文献求助10
4秒前
Rondab应助mariawang采纳,获得10
6秒前
MchemG应助酷酷的紫南采纳,获得30
7秒前
1111发布了新的文献求助10
7秒前
7秒前
continue发布了新的文献求助10
8秒前
zhangtong发布了新的文献求助10
8秒前
嘟嘟完成签到,获得积分10
8秒前
wdy111应助葡萄味的果茶采纳,获得20
9秒前
悦耳代真完成签到,获得积分10
9秒前
ysx完成签到,获得积分10
9秒前
10秒前
Orange应助淡淡夕阳采纳,获得10
10秒前
10秒前
yar重新开启了yl文献应助
11秒前
12秒前
12秒前
zhoup完成签到,获得积分20
13秒前
宝海青完成签到,获得积分10
13秒前
李健应助缓慢的含双采纳,获得10
13秒前
yqb完成签到,获得积分10
14秒前
上官若男应助笑点低的不采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
qifunongsuo1213完成签到,获得积分10
16秒前
chenzixin发布了新的文献求助10
16秒前
16秒前
明理致远发布了新的文献求助10
16秒前
yqb发布了新的文献求助10
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021