Large-Scale and Knowledge-Based Dynamic Multiobjective Optimization for MSWI Process Using Adaptive Competitive Swarm Optimization

多目标优化 计算机科学 过程(计算) 氮氧化物 最优化问题 数学优化 燃烧 数学 机器学习 化学 算法 操作系统 有机化学
作者
Weimin Huang,Haixu Ding,Junfei Qiao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 379-390 被引量:8
标识
DOI:10.1109/tsmc.2023.3308922
摘要

Municipal solid waste incineration (MSWI) process is a complex industrial process with strong nonlinearity. It is a challenge to build a model for the MSWI process and carry out the corresponding optimization works. To solve this problem, the multiobjective optimization studies are conducted for both modeling and concerned indexes of the MSWI process, including the nitrogen oxides (NOx) emissions and the combustion efficiency (CE). First, a data-driven-based multiple-input multiple-output model is established for the NOx emissions and the CE of the MSWI process based on Takagi–Sugeno–Kang fuzzy neural network. Second, an adaptive large-scale multiobjective competitive swarm optimization (ALMOCSO) algorithm is designed for solving the multiobjective optimization problems (MOPs) of the MSWI process. A comprehensive evaluation system is proposed to complete the optimization foundation, and an adaptive scheme and multistrategy learning are proposed to improve the optimization effect of the ALMOCSO algorithm in solving complex MOPs. Then, a Pareto optimal set obtained from massive historical data is utilized as optimization reference to realize the dynamic multiobjective optimization for the NOx emissions and the CE of the MSWI process. Finally, the feasibility and effectiveness of the proposed methodology for optimizing the MSWI process are confirmed by the experiments using the data collected from a real MSWI plant. The results indicate that the modeling accuracy is satisfactory, and the CE is improved over 10% and the reduction of the NOx emissions is achieved 15.58%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运常在发布了新的文献求助20
1秒前
2秒前
apex完成签到 ,获得积分10
2秒前
Junjiem完成签到,获得积分10
2秒前
Jasper应助橙子雨采纳,获得10
3秒前
3秒前
yjn发布了新的文献求助10
3秒前
ll发布了新的文献求助10
4秒前
4秒前
4秒前
SciKid524完成签到 ,获得积分10
5秒前
5秒前
Orange应助YuZhang8034采纳,获得10
5秒前
661发布了新的文献求助10
6秒前
momo完成签到,获得积分10
6秒前
8秒前
thesky发布了新的文献求助10
9秒前
可可发布了新的文献求助10
10秒前
小团子完成签到,获得积分10
11秒前
jfw发布了新的文献求助10
11秒前
诸葛藏藏完成签到 ,获得积分10
12秒前
mm完成签到 ,获得积分20
12秒前
叨叨完成签到,获得积分10
12秒前
13秒前
YDSG完成签到 ,获得积分10
14秒前
14秒前
田様应助中西医泥巴浆采纳,获得10
15秒前
乐乐应助年华采纳,获得10
15秒前
vera完成签到 ,获得积分10
17秒前
星星boy完成签到,获得积分10
17秒前
rong完成签到,获得积分10
18秒前
yangmeng发布了新的文献求助10
18秒前
Orange应助半壶月色半边天采纳,获得10
18秒前
19秒前
学术通zzz发布了新的文献求助10
19秒前
jfw完成签到,获得积分10
21秒前
21秒前
21秒前
Junjiem发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569633
求助须知:如何正确求助?哪些是违规求助? 4654420
关于积分的说明 14710265
捐赠科研通 4595934
什么是DOI,文献DOI怎么找? 2522161
邀请新用户注册赠送积分活动 1493390
关于科研通互助平台的介绍 1463987