亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BioSTD: A New Tensor Multi-View Framework via Combining Tensor Decomposition and Strong Complementarity Constraint for Analyzing Cancer Omics Data

组学 互补性(分子生物学) 计算机科学 维数之咒 数据挖掘 计算生物学 生物信息学 机器学习 生物 遗传学
作者
Ying-Lian Gao,Qian Qiao,Juan Wang,Shasha Yuan,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5187-5198 被引量:4
标识
DOI:10.1109/jbhi.2023.3299274
摘要

Advances in omics technology have enriched the understanding of the biological mechanisms of diseases, which has provided a new approach for cancer research. Multi-omics data contain different levels of cancer information, and comprehensive analysis of them has attracted wide attention. However, limited by the dimensionality of matrix models, traditional methods cannot fully use the key high-dimensional global structure of multi-omics data. Moreover, besides global information, local features within each omics are also critical. It is necessary to consider the potential local information together with the high-dimensional global information, ensuring that the shared and complementary features of the omics data are comprehensively observed. In view of the above, this article proposes a new tensor integrative framework called the strong complementarity tensor decomposition model (BioSTD) for cancer multi-omics data. It is used to identify cancer subtype specific genes and cluster subtype samples. Different from the matrix framework, BioSTD utilizes multi-view tensors to coordinate each omics to maximize high-dimensional spatial relationships, which jointly considers the different characteristics of different omics data. Meanwhile, we propose the concept of strong complementarity constraint applicable to omics data and introduce it into BioSTD. Strong complementarity is used to explore the potential local information, which can enhance the separability of different subtypes, allowing consistency and complementarity in the omics data to be fully represented. Experimental results on real cancer datasets show that our model outperforms other advanced models, which confirms its validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Willow采纳,获得10
2秒前
2秒前
3秒前
科研通AI6.1应助wwwwyt采纳,获得10
10秒前
10秒前
14秒前
畅快甜瓜发布了新的文献求助10
15秒前
26秒前
26秒前
26秒前
32秒前
38秒前
40秒前
45秒前
YQQ发布了新的文献求助10
47秒前
51秒前
小豆芽完成签到,获得积分10
58秒前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
畅快甜瓜发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
Omni发布了新的文献求助10
1分钟前
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
内向的绿发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732139
求助须知:如何正确求助?哪些是违规求助? 5336882
关于积分的说明 15322005
捐赠科研通 4877849
什么是DOI,文献DOI怎么找? 2620672
邀请新用户注册赠送积分活动 1569937
关于科研通互助平台的介绍 1526507