BioSTD: A New Tensor Multi-View Framework via Combining Tensor Decomposition and Strong Complementarity Constraint for Analyzing Cancer Omics Data

组学 互补性(分子生物学) 计算机科学 维数之咒 数据挖掘 计算生物学 生物信息学 机器学习 生物 遗传学
作者
Ying-Lian Gao,Qian Qiao,Juan Wang,Shasha Yuan,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5187-5198 被引量:4
标识
DOI:10.1109/jbhi.2023.3299274
摘要

Advances in omics technology have enriched the understanding of the biological mechanisms of diseases, which has provided a new approach for cancer research. Multi-omics data contain different levels of cancer information, and comprehensive analysis of them has attracted wide attention. However, limited by the dimensionality of matrix models, traditional methods cannot fully use the key high-dimensional global structure of multi-omics data. Moreover, besides global information, local features within each omics are also critical. It is necessary to consider the potential local information together with the high-dimensional global information, ensuring that the shared and complementary features of the omics data are comprehensively observed. In view of the above, this article proposes a new tensor integrative framework called the strong complementarity tensor decomposition model (BioSTD) for cancer multi-omics data. It is used to identify cancer subtype specific genes and cluster subtype samples. Different from the matrix framework, BioSTD utilizes multi-view tensors to coordinate each omics to maximize high-dimensional spatial relationships, which jointly considers the different characteristics of different omics data. Meanwhile, we propose the concept of strong complementarity constraint applicable to omics data and introduce it into BioSTD. Strong complementarity is used to explore the potential local information, which can enhance the separability of different subtypes, allowing consistency and complementarity in the omics data to be fully represented. Experimental results on real cancer datasets show that our model outperforms other advanced models, which confirms its validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chaowei_L发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Kilig发布了新的文献求助10
1秒前
1秒前
勤奋的绪发布了新的文献求助10
2秒前
2秒前
2秒前
燕子完成签到,获得积分20
2秒前
3秒前
NexusExplorer应助宇文霆采纳,获得30
3秒前
3秒前
zcy完成签到,获得积分10
4秒前
4秒前
jijibao完成签到,获得积分10
4秒前
马騳骉完成签到,获得积分10
4秒前
4秒前
5秒前
可爱的函函应助tangz采纳,获得10
6秒前
爆米花应助Nicole采纳,获得10
6秒前
6秒前
在水一方应助QQ采纳,获得10
7秒前
Jackson完成签到 ,获得积分10
7秒前
NexusExplorer应助勤奋的绪采纳,获得10
7秒前
神勇的绿凝完成签到,获得积分10
7秒前
小王完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
LLL发布了新的文献求助10
9秒前
学习完成签到,获得积分10
9秒前
zsj3787完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
包包发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
想龙空完成签到,获得积分10
11秒前
zxmk发布了新的文献求助10
12秒前
呃呃呃呃呃完成签到,获得积分10
12秒前
Just97完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707596
求助须知:如何正确求助?哪些是违规求助? 5184803
关于积分的说明 15250947
捐赠科研通 4860890
什么是DOI,文献DOI怎么找? 2608987
邀请新用户注册赠送积分活动 1559779
关于科研通互助平台的介绍 1517558