Multitask Deep Learning‐Based Whole‐Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast‐Enhanced‐MRI: A Multicenter Study

分割 乳房磁振造影 腋窝淋巴结 接收机工作特性 医学 放射科 人工智能 试验装置 计算机科学 卡帕 淋巴结 乳腺癌 模式识别(心理学) 动态增强MRI 磁共振成像 乳腺摄影术 内科学 癌症 数学 几何学
作者
Heng Zhou,Zhen Hua,Jing Gao,Fan Lin,Yuqian Chen,Shijie Zhang,Tiantian Zheng,Zhongyi Wang,Huafei Shao,Wenjuan Li,Fengjie Liu,Qin Li,Jingjing Chen,Ximing Wang,Feng Zhao,Nina Qu,Haizhu Xie,Heng Ma,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1710-1722 被引量:4
标识
DOI:10.1002/jmri.28913
摘要

Background Accurate diagnosis of breast lesions and discrimination of axillary lymph node (ALN) metastases largely depend on radiologist experience. Purpose To develop a deep learning‐based whole‐process system (DLWPS) for segmentation and diagnosis of breast lesions and discrimination of ALN metastasis. Study Type Retrospective. Population 1760 breast patients, who were divided into training and validation sets (1110 patients), internal (476 patients), and external (174 patients) test sets. Field Strength/Sequence 3.0T/dynamic contrast‐enhanced ( DCE )‐ MRI sequence. Assessment DLWPS was developed using segmentation and classification models. The DLWPS‐based segmentation model was developed by the U‐Net framework, which combined the attention module and the edge feature extraction module. The average score of the output scores of three networks was used as the result of the DLWPS‐based classification model. Moreover, the radiologists' diagnosis without and with the DLWPS‐assistance was explored. To reveal the underlying biological basis of DLWPS, genetic analysis was performed based on RNA‐sequencing data. Statistical Tests Dice similarity coefficient (DI), area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and kappa value. Results The segmentation model reached a DI of 0.828 and 0.813 in the internal and external test sets, respectively. Within the breast lesions diagnosis, the DLWPS achieved AUCs of 0.973 in internal test set and 0.936 in external test set. For ALN metastasis discrimination, the DLWPS achieved AUCs of 0.927 in internal test set and 0.917 in external test set. The agreement of radiologists improved with the DLWPS‐assistance from 0.547 to 0.794, and from 0.848 to 0.892 in breast lesions diagnosis and ALN metastasis discrimination, respectively. Additionally, 10 breast cancers with ALN metastasis were associated with pathways of aerobic electron transport chain and cytoplasmic translation. Data Conclusion The performance of DLWPS indicates that it can promote radiologists in the judgment of breast lesions and ALN metastasis and nonmetastasis. Level of Evidence 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助科研的师弟采纳,获得10
刚刚
刘晓倩发布了新的文献求助10
刚刚
老解完成签到 ,获得积分10
1秒前
1秒前
2秒前
思源应助坚定的可愁采纳,获得10
4秒前
XHY123发布了新的文献求助10
4秒前
5秒前
坚强丹雪完成签到,获得积分10
6秒前
蓝天白云发布了新的文献求助10
6秒前
yuhang完成签到,获得积分10
6秒前
洛苏完成签到,获得积分10
7秒前
吴军霄完成签到,获得积分10
7秒前
666完成签到,获得积分10
7秒前
wanci应助深情代玉采纳,获得10
11秒前
不配.应助小郭采纳,获得10
12秒前
wyy完成签到,获得积分10
13秒前
XHY123完成签到,获得积分10
13秒前
zy完成签到 ,获得积分10
15秒前
15秒前
陶醉的翅膀完成签到,获得积分10
16秒前
茉莉园完成签到,获得积分10
17秒前
科目三应助wyy采纳,获得10
17秒前
孤独的匕完成签到,获得积分10
18秒前
社牛小柯完成签到,获得积分10
19秒前
21秒前
大鱼完成签到,获得积分10
21秒前
zzz发布了新的文献求助10
21秒前
脑洞疼应助谭你脑瓜崩采纳,获得10
23秒前
云云完成签到 ,获得积分10
25秒前
大鱼发布了新的文献求助10
26秒前
27秒前
28秒前
斯文败类应助杨夕采纳,获得10
28秒前
称心豁完成签到,获得积分10
29秒前
孤独的匕发布了新的文献求助10
29秒前
XL应助elve采纳,获得10
30秒前
31秒前
jjjjjjjing发布了新的文献求助10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046