运动规划
计算机科学
二次规划
路径(计算)
A*搜索算法
节点(物理)
网格
算法
组分(热力学)
地形
图层(电子)
规划师
比例(比率)
数学优化
人工智能
机器人
数学
工程类
生态学
化学
物理
几何学
结构工程
有机化学
量子力学
生物
热力学
程序设计语言
作者
Junkai Jiang,Zeyu Han,Jinhao Li,Yuning Wang,Jianqiang Wang,Shaobing Xu
标识
DOI:10.1109/iv55152.2023.10186797
摘要
Global path planning is an essential component of intelligent vehicle study. This paper designs a two-layer global path planning method based on an improved A* algorithm and quadratic programming for UGVs in a large-scale off-road environment. In the first layer, we generate a global path from the current node to the target node via an improved A* algorithm, with a grid map containing the information of non-accessible areas and uncertainty of off-road terrains as input. The second layer smooths the entire path based on quadratic programming. We adopt efficiency improvement methods in both layers, which ensure the real-time performance of the algorithm. The planner has been verified by simulation and experiments, and the results validate the practicability and real-time performance of the designed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI