Climate warming has caused widespread global concern. However, how warming affects soil microbial diversity, richness, and community structure on a global scale remains poorly understood. Here we conduct a meta-analysis of 945 observations from 100 publications by collecting relevant data. The results show that field warming experiments significantly modify soil temperature (+1.8°C), soil water content (-3.2%), and soil pH (-0.04). However, field warming does not significantly alter the diversity, richness, and community structure of soil bacteria and fungi. Warming-induced changes in soil variables (i.e., ΔSoil water content, ΔpH), ΔTemperature and experimental duration are important factors influencing the microbial responses to warming. In addition, soil bacterial α-diversity (Shannon index) decreases significantly (-3.4%) when the warming duration is 3-6 years, and bacterial β-diversity increases significantly (35.2%) when warming exceeds 6 years. Meta-regression analysis reveals a positive correlation between the change of bacterial Shannon index and ΔpH. Moreover, warming produces more pronounced effects on fungal Shannon index and β-diversity in experimental sites with moderate mean annual temperature (MAT, 0°C-10°C) than in higher (> 10°C) or lower (< 0°C) MAT. Overall, this study provides a global perspective on the response of soil microorganisms to climate warming and improves our knowledge of the factors influencing the response of soil microorganisms to warming.