Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study

宫颈癌 医学 人口 癌症预防 医学物理学 机器学习 癌症 计算机科学 人工智能 环境卫生 内科学
作者
Zhen Lu,Binhua Dong,Hongning Cai,Tian Tian,Junfeng Wang,Leiwen Fu,Bingyi Wang,Weijie Zhang,Shanshan Lin,Xunyuan Tuo,Juntao Wang,Tianjie Yang,Xin-xin Huang,Zheng Zheng,Huifeng Xue,Shuxia Xu,Siyang Liu,Pengming Sun,Huachun Zou
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:11: e67840-e67840
标识
DOI:10.2196/67840
摘要

Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP) strategies tailored to phenotypic profiles may improve prevention and reduce disease burden. This study aimed to identify subgroups with differential cervical precancer or cancer risks using machine learning, validate subgroup predictions across datasets, and propose a computational phenomapping strategy to enhance global CCP efforts. We explored the data-driven CCP subgroups by applying unsupervised machine learning to a deeply phenotyped, population-based discovery cohort. We extracted CCP-specific risks of cervical intraepithelial neoplasia (CIN) and cervical cancer through weighted logistic regression analyses providing odds ratio (OR) estimates and 95% CIs. We trained a supervised machine learning model and developed pathways to classify individuals before evaluating its diagnostic validity and usability on an external cohort. This study included 551,934 women (median age, 49 years) in the discovery cohort and 47,130 women (median age, 37 years) in the external cohort. Phenotyping identified 5 CCP subgroups, with CCP4 showing the highest carcinoma prevalence. CCP2-4 had significantly higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03-2.12], CCP3: 3.88 [3.78-3.97], and CCP4: 4.47 [4.33-4.63]) and CIN3+ (CCP2: 2.10 [2.05-2.14], CCP3: 3.92 [3.82-4.02], and CCP4: 4.45 [4.31-4.61]) compared to CCP1 (P<.001), consistent with the direction of results observed in the external cohort. The proposed triple strategy was validated as clinically relevant, prioritizing high-risk subgroups (CCP3-4) for colposcopies and scaling human papillomavirus screening for CCP1-2. This study underscores the potential of leveraging machine learning algorithms and large-scale routine electronic health records to enhance CCP strategies. By identifying key determinants of CIN2+/CIN3+ risk and classifying 5 distinct subgroups, our study provides a robust, data-driven foundation for the proposed triple strategy. This approach prioritizes tailored prevention efforts for subgroups with varying risks, offering a novel and scalable tool to complement existing cervical cancer screening guidelines. Future work should focus on independent external and prospective validation to maximize the global impact of this strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sawyer发布了新的文献求助10
1秒前
我是老大应助喜欢做实验采纳,获得10
2秒前
2秒前
方断秋发布了新的文献求助10
2秒前
科研通AI5应助liuyong6413采纳,获得10
3秒前
笑一笑完成签到,获得积分10
3秒前
冰冷天蝎座完成签到,获得积分10
4秒前
潇洒洙完成签到,获得积分20
4秒前
石大头完成签到,获得积分10
4秒前
月球上的人完成签到,获得积分10
5秒前
5秒前
kk完成签到,获得积分10
5秒前
5秒前
sinn17完成签到,获得积分10
5秒前
无物完成签到,获得积分10
6秒前
Celinewei完成签到,获得积分10
6秒前
虚心完成签到 ,获得积分10
7秒前
Jiangzy发布了新的文献求助10
10秒前
英姑应助海藻酸采纳,获得10
10秒前
11秒前
houl发布了新的文献求助10
11秒前
科研通AI5应助wp采纳,获得10
12秒前
沉静柏柳完成签到,获得积分10
12秒前
苟玉琴发布了新的文献求助10
13秒前
14秒前
14秒前
Sunny完成签到 ,获得积分10
14秒前
15秒前
科研通AI5应助chaowei采纳,获得10
15秒前
卜卜脆发布了新的文献求助10
16秒前
WYF发布了新的文献求助10
16秒前
水天完成签到 ,获得积分10
16秒前
CodeCraft应助starryxm采纳,获得10
19秒前
善学以致用应助泡泡鱼采纳,获得10
19秒前
haprier完成签到 ,获得积分10
19秒前
LJT发布了新的文献求助10
20秒前
时冬冬应助飘落采纳,获得10
20秒前
20秒前
21秒前
动漫大师发布了新的文献求助30
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730226
求助须知:如何正确求助?哪些是违规求助? 3274998
关于积分的说明 9990380
捐赠科研通 2990513
什么是DOI,文献DOI怎么找? 1641210
邀请新用户注册赠送积分活动 779605
科研通“疑难数据库(出版商)”最低求助积分说明 748305