Automated Depression Diagnosis in MDD (Major Depressive Disorder) Patients Using EEG Signal

重性抑郁障碍 支持向量机 人工智能 朴素贝叶斯分类器 模式识别(心理学) 脑电图 计算机科学 决策树 分类器(UML) 机器学习 心理学 精神科 认知
作者
Sweety Singh,Poonam Sheoran,Manoj Duhan
出处
期刊:Lecture notes in networks and systems 卷期号:: 220-233
标识
DOI:10.1007/978-3-031-27499-2_21
摘要

The detection of major depression is very critical process. The identification and treatment of depression at right time is very essential for well-being of person along with family and society. The acquisition of signal from patient is complex and time-consuming process. So, Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) is considered to accomplish present research work. Different modalities are available for identification of mental stress but here in this work, Electroencephalography (EEG) technique is chosen due to its painless and low-cost features. All the relevant 10 features (linear and non-linear features) are calculated from the dataset of 10 subjects (5 MDD and 5 Healthy Control (HC)) using EEG LAB toolbox in MATLAB R2020b software. The array of matrix of various features is formed for all subjects (5 MDD and 5 HC). All 128-channel EEG data features calculated in more effective way. The classification process is accomplished using 5 Classifiers named Linear SVM (Support Vector Machine), Fine Tree, LR (Logistic Regression), Kernel Naïve Bayes and Fine KNN (K-Nearest Neighbor) for better accuracy. The highest average correct classification rate for Fine Tree classifier for 5 features and 10 features is found to be 99.52% and 99.68%, respectively. These results are compared with other classifiers to reach final conclusion of finding best modality to differentiate MDD patient from healthy one. In this way, we find out best classifier for detection of depression using MODMA dataset of 128-channel EEG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杪杪发布了新的文献求助10
刚刚
花花完成签到,获得积分10
1秒前
orixero应助你是我的唯一采纳,获得10
1秒前
ZDXB完成签到,获得积分10
1秒前
4秒前
9Songs发布了新的文献求助10
7秒前
7秒前
刘哈哈完成签到,获得积分10
7秒前
科目三应助GXP采纳,获得10
8秒前
9秒前
Jisoo520完成签到 ,获得积分10
10秒前
杪杪完成签到,获得积分10
10秒前
10秒前
Harper发布了新的文献求助10
12秒前
12秒前
Dawn发布了新的文献求助10
16秒前
维维完成签到,获得积分10
16秒前
17秒前
linfordlu完成签到,获得积分0
21秒前
彭于晏应助9Songs采纳,获得10
21秒前
22秒前
22秒前
Artra_Soong完成签到,获得积分10
24秒前
24秒前
26秒前
研友_VZG7GZ应助yjo采纳,获得10
27秒前
扇子发布了新的文献求助20
27秒前
29秒前
31秒前
李健应助zhangwenjie采纳,获得10
31秒前
31秒前
daoketuo完成签到,获得积分10
31秒前
daoketuo发布了新的文献求助10
34秒前
唐若冰完成签到,获得积分10
35秒前
积极向上山楂片完成签到,获得积分10
35秒前
嗯啊完成签到,获得积分10
36秒前
37秒前
37秒前
phil完成签到,获得积分10
39秒前
含蓄的赛君完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532