亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Depression Diagnosis in MDD (Major Depressive Disorder) Patients Using EEG Signal

重性抑郁障碍 支持向量机 人工智能 朴素贝叶斯分类器 模式识别(心理学) 脑电图 计算机科学 决策树 分类器(UML) 机器学习 心理学 精神科 认知
作者
Sweety Singh,Poonam Sheoran,Manoj Duhan
出处
期刊:Lecture notes in networks and systems 卷期号:: 220-233
标识
DOI:10.1007/978-3-031-27499-2_21
摘要

The detection of major depression is very critical process. The identification and treatment of depression at right time is very essential for well-being of person along with family and society. The acquisition of signal from patient is complex and time-consuming process. So, Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) is considered to accomplish present research work. Different modalities are available for identification of mental stress but here in this work, Electroencephalography (EEG) technique is chosen due to its painless and low-cost features. All the relevant 10 features (linear and non-linear features) are calculated from the dataset of 10 subjects (5 MDD and 5 Healthy Control (HC)) using EEG LAB toolbox in MATLAB R2020b software. The array of matrix of various features is formed for all subjects (5 MDD and 5 HC). All 128-channel EEG data features calculated in more effective way. The classification process is accomplished using 5 Classifiers named Linear SVM (Support Vector Machine), Fine Tree, LR (Logistic Regression), Kernel Naïve Bayes and Fine KNN (K-Nearest Neighbor) for better accuracy. The highest average correct classification rate for Fine Tree classifier for 5 features and 10 features is found to be 99.52% and 99.68%, respectively. These results are compared with other classifiers to reach final conclusion of finding best modality to differentiate MDD patient from healthy one. In this way, we find out best classifier for detection of depression using MODMA dataset of 128-channel EEG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘大妮完成签到,获得积分10
1秒前
刘大妮发布了新的文献求助10
5秒前
tears发布了新的文献求助20
10秒前
大反应釜完成签到,获得积分10
10秒前
完美世界应助tears采纳,获得10
28秒前
33秒前
37秒前
46秒前
Lucas应助科研通管家采纳,获得10
48秒前
48秒前
59秒前
上官若男应助lf采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
tears发布了新的文献求助10
1分钟前
lf发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI2S应助Kevin采纳,获得10
2分钟前
2分钟前
YamDaamCaa应助Kevin采纳,获得30
2分钟前
2分钟前
西瓜完成签到 ,获得积分10
2分钟前
小乘号子发布了新的文献求助10
2分钟前
打打应助lf采纳,获得10
2分钟前
2分钟前
我的文献呢应助小乘号子采纳,获得30
2分钟前
lf发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
拾光发布了新的文献求助10
2分钟前
ding应助怡春院李老鸨采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204672
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629