Automated Depression Diagnosis in MDD (Major Depressive Disorder) Patients Using EEG Signal

重性抑郁障碍 支持向量机 人工智能 朴素贝叶斯分类器 模式识别(心理学) 脑电图 计算机科学 决策树 分类器(UML) 机器学习 心理学 精神科 认知
作者
Sweety Singh,Poonam Sheoran,Manoj Duhan
出处
期刊:Lecture notes in networks and systems 卷期号:: 220-233
标识
DOI:10.1007/978-3-031-27499-2_21
摘要

The detection of major depression is very critical process. The identification and treatment of depression at right time is very essential for well-being of person along with family and society. The acquisition of signal from patient is complex and time-consuming process. So, Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) is considered to accomplish present research work. Different modalities are available for identification of mental stress but here in this work, Electroencephalography (EEG) technique is chosen due to its painless and low-cost features. All the relevant 10 features (linear and non-linear features) are calculated from the dataset of 10 subjects (5 MDD and 5 Healthy Control (HC)) using EEG LAB toolbox in MATLAB R2020b software. The array of matrix of various features is formed for all subjects (5 MDD and 5 HC). All 128-channel EEG data features calculated in more effective way. The classification process is accomplished using 5 Classifiers named Linear SVM (Support Vector Machine), Fine Tree, LR (Logistic Regression), Kernel Naïve Bayes and Fine KNN (K-Nearest Neighbor) for better accuracy. The highest average correct classification rate for Fine Tree classifier for 5 features and 10 features is found to be 99.52% and 99.68%, respectively. These results are compared with other classifiers to reach final conclusion of finding best modality to differentiate MDD patient from healthy one. In this way, we find out best classifier for detection of depression using MODMA dataset of 128-channel EEG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
正直静曼完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
SSY发布了新的文献求助10
4秒前
稳重从雪发布了新的文献求助30
4秒前
讨厌的十九岁完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
xm发布了新的文献求助10
5秒前
所所应助白兰鸽采纳,获得10
6秒前
7秒前
江流有声完成签到 ,获得积分10
8秒前
9秒前
9秒前
AA完成签到,获得积分10
10秒前
11秒前
王思凯发布了新的文献求助10
11秒前
xm完成签到,获得积分10
13秒前
13秒前
完美世界应助shinn采纳,获得10
14秒前
科研通AI6.1应助萌only采纳,获得10
15秒前
冷酷的风华完成签到,获得积分10
16秒前
充电宝应助借一颗糖采纳,获得10
16秒前
读万卷书完成签到 ,获得积分10
16秒前
王思凯完成签到,获得积分20
16秒前
Ellalala完成签到 ,获得积分10
18秒前
18秒前
20秒前
21秒前
辛勤的沉鱼完成签到,获得积分10
22秒前
23秒前
23秒前
liyingbo发布了新的文献求助20
23秒前
lchenbio发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
李健的小迷弟应助小可采纳,获得30
25秒前
科目三应助916采纳,获得10
25秒前
aaa完成签到 ,获得积分10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778724
求助须知:如何正确求助?哪些是违规求助? 5643441
关于积分的说明 15450266
捐赠科研通 4910269
什么是DOI,文献DOI怎么找? 2642586
邀请新用户注册赠送积分活动 1590334
关于科研通互助平台的介绍 1544675