Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hello应助辛未采纳,获得10
4秒前
852应助庾稀采纳,获得30
5秒前
阿甲完成签到,获得积分10
6秒前
清风明月发布了新的文献求助10
7秒前
止咳宝完成签到 ,获得积分10
12秒前
12秒前
KinoFreeze完成签到 ,获得积分10
12秒前
怡然的怜烟应助OU采纳,获得30
12秒前
Jasper应助萱萱采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
852应助希希采纳,获得10
14秒前
欣喜成仁完成签到 ,获得积分10
14秒前
17秒前
17秒前
jsxok发布了新的文献求助10
18秒前
20秒前
诚心的刘完成签到,获得积分10
22秒前
FUN0827发布了新的文献求助10
24秒前
Mic应助yuzi采纳,获得10
25秒前
文青发布了新的文献求助10
25秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
吞吞完成签到,获得积分10
32秒前
bearbiscuit完成签到,获得积分10
33秒前
ruirchen完成签到,获得积分10
33秒前
文青完成签到,获得积分10
36秒前
阳光之柔发布了新的文献求助10
36秒前
桐桐应助欣喜成仁采纳,获得10
40秒前
41秒前
量子星尘发布了新的文献求助10
41秒前
lucy完成签到,获得积分20
43秒前
烟花应助勒71采纳,获得10
43秒前
43秒前
天亮了完成签到,获得积分10
43秒前
44秒前
无机盐发布了新的文献求助10
44秒前
充电宝应助41采纳,获得10
45秒前
站岗小狗完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740