Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈湫完成签到,获得积分10
刚刚
田様应助等待的寒松采纳,获得10
刚刚
害怕的白竹完成签到,获得积分10
1秒前
随心完成签到,获得积分10
1秒前
怕孤单的嚣完成签到,获得积分20
1秒前
lcxw1224完成签到,获得积分10
1秒前
2秒前
长常九久发布了新的文献求助10
3秒前
15503116087发布了新的文献求助10
3秒前
大个应助初之采纳,获得10
4秒前
te发布了新的文献求助10
4秒前
边港洋完成签到,获得积分10
6秒前
6秒前
凤羽发布了新的文献求助10
7秒前
灵巧听露发布了新的文献求助10
7秒前
可爱的函函应助猫猫无敌采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
爆米花应助刁弘睿采纳,获得10
11秒前
11秒前
11秒前
缥缈海云完成签到,获得积分10
11秒前
12秒前
斯文败类应助沙场秋点兵采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
14秒前
无辜问玉发布了新的文献求助10
14秒前
14秒前
15秒前
谨慎乐安发布了新的文献求助10
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
缥缈海云发布了新的文献求助10
18秒前
mylaodao发布了新的文献求助10
18秒前
19秒前
chen完成签到,获得积分10
20秒前
拾贰月发布了新的文献求助10
20秒前
俊杰完成签到,获得积分10
21秒前
阿菜完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425