Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小山隹完成签到,获得积分10
刚刚
脑洞疼应助ffxxinnnn采纳,获得20
1秒前
2秒前
3秒前
夏惋清完成签到 ,获得积分0
4秒前
加油呀发布了新的文献求助10
5秒前
hang完成签到,获得积分10
5秒前
亦安发布了新的文献求助10
7秒前
8秒前
8秒前
整齐半青完成签到 ,获得积分10
8秒前
科研通AI2S应助科研采纳,获得10
8秒前
希妍发布了新的文献求助10
9秒前
西米露完成签到 ,获得积分10
10秒前
11秒前
善学以致用应助路宝采纳,获得10
12秒前
12秒前
浮游应助舒心的向卉采纳,获得10
12秒前
liamddd完成签到 ,获得积分10
12秒前
星辰大海应助传统的雨文采纳,获得10
12秒前
12秒前
13秒前
jjjwln发布了新的文献求助10
14秒前
Van完成签到,获得积分10
14秒前
Ruia发布了新的文献求助10
15秒前
16秒前
赘婿应助li采纳,获得10
16秒前
17秒前
自觉问芙发布了新的文献求助10
18秒前
spume发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得30
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
不安青牛应助科研通管家采纳,获得10
22秒前
干净寻冬应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620905
求助须知:如何正确求助?哪些是违规求助? 4705599
关于积分的说明 14932648
捐赠科研通 4763944
什么是DOI,文献DOI怎么找? 2551370
邀请新用户注册赠送积分活动 1513876
关于科研通互助平台的介绍 1474715