Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐骁发布了新的文献求助10
1秒前
纯洁完成签到 ,获得积分10
1秒前
1秒前
变化球完成签到,获得积分10
1秒前
万芳应助李成博采纳,获得10
2秒前
苏杰完成签到,获得积分10
2秒前
乐乐应助晓山青采纳,获得10
2秒前
TOMBER发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI6应助bull9518采纳,获得30
3秒前
东日发布了新的文献求助10
4秒前
mirandaaa完成签到,获得积分10
5秒前
趣多多发布了新的文献求助10
5秒前
在水一方应助327采纳,获得10
5秒前
5秒前
CodeCraft应助顺心寻云采纳,获得10
5秒前
fan051500发布了新的文献求助10
6秒前
HHHHH发布了新的文献求助10
6秒前
6秒前
科研通AI6应助大水采纳,获得10
7秒前
7秒前
从容小鸽子完成签到,获得积分10
7秒前
Halo发布了新的文献求助10
7秒前
ATOM发布了新的文献求助30
8秒前
8秒前
传奇3应助啊啊啊啊采纳,获得20
10秒前
12完成签到,获得积分10
10秒前
幸福的小刺猬完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
CipherSage应助Aggie采纳,获得10
12秒前
12秒前
longer发布了新的文献求助10
13秒前
13秒前
xiaobo发布了新的文献求助30
13秒前
书桃发布了新的文献求助30
13秒前
量子星尘发布了新的文献求助10
13秒前
euphoria完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505445
求助须知:如何正确求助?哪些是违规求助? 4600962
关于积分的说明 14475258
捐赠科研通 4535104
什么是DOI,文献DOI怎么找? 2485159
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440680