清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
激动的似狮完成签到,获得积分10
29秒前
47秒前
尤里有气发布了新的文献求助10
54秒前
RC发布了新的文献求助10
58秒前
tt完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
MTF完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
赘婿应助moonsea0415采纳,获得10
3分钟前
任性的紫翠完成签到,获得积分10
3分钟前
活泼雪碧完成签到 ,获得积分10
3分钟前
3分钟前
moonsea0415发布了新的文献求助10
3分钟前
moonsea0415完成签到,获得积分10
4分钟前
Joins_Su完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
Kevin发布了新的文献求助10
4分钟前
大个应助紧张的铃铛采纳,获得10
4分钟前
4分钟前
尤里有气发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
zakaria完成签到,获得积分10
5分钟前
紧张的铃铛完成签到,获得积分10
5分钟前
科研通AI6应助紧张的铃铛采纳,获得80
5分钟前
merrylake完成签到 ,获得积分10
6分钟前
6分钟前
Akim应助重庆森林采纳,获得30
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723