Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:15
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭子仪完成签到,获得积分10
刚刚
小伏发布了新的文献求助30
1秒前
Felix完成签到,获得积分10
2秒前
horry完成签到,获得积分10
2秒前
大模型应助感动的嚓茶采纳,获得10
2秒前
么椰咩发布了新的文献求助10
2秒前
Akim应助咻咻采纳,获得10
3秒前
倩倩发布了新的文献求助10
4秒前
洁净的元蝶完成签到,获得积分20
6秒前
华仔应助crazyrock采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
KAOKAO完成签到,获得积分10
8秒前
娜美完成签到,获得积分10
9秒前
花花发布了新的文献求助10
10秒前
苏楠完成签到 ,获得积分10
11秒前
么椰咩完成签到,获得积分10
11秒前
12秒前
13秒前
胡萝卜发布了新的文献求助20
14秒前
蚂蚁飞飞完成签到,获得积分10
15秒前
16秒前
CipherSage应助三三搞科研采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
魏小梅完成签到,获得积分10
17秒前
思源应助67n采纳,获得10
18秒前
科研通AI6.1应助Kevin采纳,获得10
18秒前
18秒前
赵大大发布了新的文献求助10
18秒前
福yyy完成签到 ,获得积分10
21秒前
笑点低的黄豆完成签到 ,获得积分10
22秒前
宁家任公子完成签到,获得积分10
22秒前
horry发布了新的文献求助10
24秒前
黎子发布了新的文献求助10
24秒前
小智0921完成签到,获得积分10
25秒前
花花完成签到,获得积分10
25秒前
Kenny发布了新的文献求助30
26秒前
LLLFFFAAN完成签到,获得积分10
27秒前
插线板完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775161
求助须知:如何正确求助?哪些是违规求助? 5622242
关于积分的说明 15437861
捐赠科研通 4907500
什么是DOI,文献DOI怎么找? 2640726
邀请新用户注册赠送积分活动 1588600
关于科研通互助平台的介绍 1543497