亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anatomically constrained and attention-guided deep feature fusion for joint segmentation and deformable medical image registration

分割 人工智能 计算机科学 图像配准 计算机视觉 特征(语言学) 尺度空间分割 图像分割 基本事实 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Hee Guan Khor,Guochen Ning,Yihua Sun,Lu Xu,Xinran Zhang,Hongen Liao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102811-102811 被引量:10
标识
DOI:10.1016/j.media.2023.102811
摘要

The main objective of anatomically plausible results for deformable image registration is to improve model’s registration accuracy by minimizing the difference between a pair of fixed and moving images. Since many anatomical features are closely related to each other, leveraging supervision from auxiliary tasks (such as supervised anatomical segmentation) has the potential to enhance the realism of the warped images after registration. In this work, we employ a Multi-Task Learning framework to formulate registration and segmentation as a joint issue, in which we utilize anatomical constraint from auxiliary supervised segmentation to enhance the realism of the predicted images. First, we propose a Cross-Task Attention Block to fuse the high-level feature from both the registration and segmentation network. With the help of initial anatomical segmentation, the registration network can benefit from learning the task-shared feature correlation and rapidly focusing on the parts that need deformation. On the other hand, the anatomical segmentation discrepancy from ground-truth fixed annotations and predicted segmentation maps of initial warped images are integrated into the loss function to guide the convergence of the registration network. Ideally, a good deformation field should be able to minimize the loss function of registration and segmentation. The voxel-wise anatomical constraint inferred from segmentation helps the registration network to reach a global optimum for both deformable and segmentation learning. Both networks can be employed independently during the testing phase, enabling only the registration output to be predicted when the segmentation labels are unavailable. Qualitative and quantitative results indicate that our proposed methodology significantly outperforms the previous state-of-the-art approaches on inter-patient brain MRI registration and pre- and intra-operative uterus MRI registration tasks within our specific experimental setup, which leads to state-of-the-art registration quality scores of 0.755 and 0.731 (i.e., by 0.8% and 0.5% increases) DSC for both tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
32秒前
33秒前
科研通AI40应助繁星采纳,获得10
33秒前
41秒前
繁星发布了新的文献求助10
47秒前
jfc完成签到 ,获得积分10
1分钟前
1分钟前
You发布了新的文献求助10
1分钟前
Jasper应助You采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
啊哈发布了新的文献求助10
2分钟前
啊哈完成签到,获得积分10
3分钟前
文艺猫咪完成签到,获得积分10
3分钟前
3分钟前
yoyo发布了新的文献求助20
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
4分钟前
繁星完成签到,获得积分10
4分钟前
科研通AI40应助繁荣的青旋采纳,获得10
4分钟前
kfh发布了新的文献求助10
4分钟前
章铭-111完成签到 ,获得积分10
4分钟前
4分钟前
yyr完成签到 ,获得积分10
4分钟前
4分钟前
kokoko完成签到,获得积分10
4分钟前
bkagyin应助kfh采纳,获得10
4分钟前
4分钟前
5分钟前
科研通AI40应助繁荣的青旋采纳,获得10
5分钟前
潇洒凝天发布了新的文献求助30
5分钟前
5分钟前
Wilson完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
zhang完成签到 ,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
科研通AI40应助繁荣的青旋采纳,获得10
6分钟前
6分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064517
关于积分的说明 9088231
捐赠科研通 2755148
什么是DOI,文献DOI怎么找? 1511818
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473