Fragment-level classification of ECG arrhythmia using wavelet scattering transform

计算机科学 小波变换 人工智能 模式识别(心理学) 支持向量机 心律失常 小波 分类器(UML) 医学 心脏病学 心房颤动
作者
Sudestna Nahak,Akanksha Pathak,Goutam Saha
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:224: 120019-120019 被引量:11
标识
DOI:10.1016/j.eswa.2023.120019
摘要

Cardiovascular disease detection and its prevention are among the most demanding tasks in the healthcare system nowadays, as around 50 million people worldwide are at risk of being affected by heart disease. The heart’s electrical activity recorded by an electrocardiogram (ECG) provides vital pathological information about cardiac abnormalities such as arrhythmia. However, the complexity and non-linearity observed in ECG signals make disease anticipation difficult. In this work, we proposed a new approach to classify 17-classes of cardiac arrhythmia using wavelet scattering transform (WST). The WST can provide translation-invariant and deformation-stable representations of ECG by using a series of wavelet convolutions with non-linear modulus and averaging operators. Scattering coefficients from four-time windows of WST for fixed-duration ECG fragments are taken as input features to the SVM classifier. We achieved an overall classification accuracy of 98.90% in categorizing 17 arrhythmia classes taken from the MIT-BIH arrhythmia database, having 1000 ECG fragments of 45 subjects. The proposed method categorizes a 10-second ECG fragment with an average classification time of 0.007 s on a computing platform of a 2.5 GHz processor with 8 GB RAM. Our results outperform existing state-of-the-art solutions and can be deployed in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助清秀颜演采纳,获得10
刚刚
刚刚
野与荷发布了新的文献求助10
1秒前
2秒前
2秒前
十四吉完成签到 ,获得积分10
2秒前
Zl发布了新的文献求助10
3秒前
宁阿霜发布了新的文献求助20
3秒前
3秒前
比耶完成签到 ,获得积分10
3秒前
3秒前
俏皮的世界完成签到,获得积分10
4秒前
111发布了新的文献求助10
5秒前
烟花应助柏听寒采纳,获得10
5秒前
点滴电镀完成签到,获得积分10
6秒前
sxm完成签到,获得积分10
6秒前
李健应助Ivan采纳,获得10
7秒前
runtang发布了新的文献求助10
7秒前
gg完成签到,获得积分10
7秒前
fighting完成签到,获得积分10
7秒前
柠_完成签到,获得积分10
7秒前
hhh发布了新的文献求助10
9秒前
小马甲应助bjyx采纳,获得30
10秒前
10秒前
12秒前
疯狂吃辣完成签到,获得积分10
12秒前
好单纯发布了新的文献求助10
13秒前
13秒前
生动的问旋完成签到,获得积分10
13秒前
13秒前
15秒前
不吃橘子发布了新的文献求助10
15秒前
16秒前
jianwu完成签到,获得积分10
16秒前
脑洞疼应助seven采纳,获得10
16秒前
17秒前
霜月十四完成签到,获得积分10
17秒前
瞬华发布了新的文献求助10
18秒前
18秒前
hyy发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577717
求助须知:如何正确求助?哪些是违规求助? 3996873
关于积分的说明 12373702
捐赠科研通 3670822
什么是DOI,文献DOI怎么找? 2023094
邀请新用户注册赠送积分活动 1057164
科研通“疑难数据库(出版商)”最低求助积分说明 944121