Machine Learning Techniques for Predicting Risks of Late Delivery

大数据 计算机科学 预测分析 分析 供应链 数据科学 随机森林 卓越运营 商业智能 人工智能 机器学习 风险分析(工程) 过程管理 知识管理 业务 数据挖掘 营销
作者
Ravikanth Lolla,Matthew T. Harper,Jan Lunn,Jamila Mustafina,Jolnar Assi,Chong Kim Loy,Dhiya Al‐Jumeily
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 343-356
标识
DOI:10.1007/978-981-99-0741-0_25
摘要

Supply chain is a cornerstone of the eCommerce industry and is a key component in its growth. Supply chain data analytics and risk management in the eCommerce space have picked up steam in recent times. With the availability of suitable & capable resources for big data and artificial intelligence, predictive analytics has become a significant area of interest to achieve organizational excellence by exploiting data available and developing data-driven support systems. The existing literature in supply chain risk management explain various methods assisting to identify & mitigate risks using big data and machine learning (ML) techniques across industries. Although ML techniques are used in various industries, not many aspects of eCommerce had utilized predictive analytics to their benefit. In the eCommerce industry, delivery is paramount for the business. During COVID-19 pandemic, needs changed. Reliable delivery services are preferred to speedy delivery. Multiple parameters involve delivering the product to a customer as per promised due date. This research will try to predict the risks of late deliveries to online shopping customers by analyzing the historical data using machine learning techniques and comparing them by multiple performance metrics. As a part of this comparative study, a new hybrid technique which is a combination of Logistic Regression, XGBoost, Light GBM, and Random Forest is built which has outperformed all the other ensemble and individual algorithms with respect to accuracy, specificity, precision, and F1-score. This study will benefit the eCommerce companies to improve their customer satisfaction by predicting late deliveries accurately and early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
臭臭完成签到,获得积分10
2秒前
穆紫应助smile采纳,获得10
2秒前
直率的凌香完成签到,获得积分10
2秒前
内向代珊完成签到,获得积分20
2秒前
3秒前
a7489420发布了新的文献求助10
4秒前
Yiy关闭了Yiy文献求助
4秒前
zZ发布了新的文献求助10
4秒前
5秒前
咔咔完成签到 ,获得积分10
5秒前
6秒前
彭于晏应助暴躁的信封采纳,获得10
6秒前
害怕的宝川完成签到,获得积分20
6秒前
7秒前
华仔应助HUI采纳,获得10
9秒前
violet_项完成签到,获得积分10
9秒前
852应助辛勤的乌采纳,获得10
9秒前
10秒前
a7489420完成签到,获得积分20
10秒前
10秒前
songjin111111应助GY采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
十分喜欢完成签到 ,获得积分10
17秒前
xx发布了新的文献求助10
17秒前
18秒前
花园里的蒜完成签到 ,获得积分0
18秒前
11完成签到,获得积分10
20秒前
星辰坠于海应助zhong采纳,获得10
20秒前
忧郁的夏山关注了科研通微信公众号
20秒前
赘婿应助zhong采纳,获得10
20秒前
yuaner发布了新的文献求助10
21秒前
辛勤的乌发布了新的文献求助10
21秒前
qsy发布了新的文献求助10
21秒前
冬虫夏草发布了新的文献求助10
22秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3050909
求助须知:如何正确求助?哪些是违规求助? 2708236
关于积分的说明 7412010
捐赠科研通 2352411
什么是DOI,文献DOI怎么找? 1245174
科研通“疑难数据库(出版商)”最低求助积分说明 605463
版权声明 595796