Dual dynamic crosslinking of rubber for enhanced mechanical properties and reconfigurable shape memory behavior

共价键 氢键 动态力学分析 天然橡胶 材料科学 动态共价化学 韧性 非共价相互作用 高分子化学 化学 复合材料 分子 聚合物 有机化学 超分子化学
作者
Zhenghai Tang,Yi Chen,Chengfeng Zhang,Siwu Wu,Baochun Guo,Liqun Zhang
出处
期刊:Polymer International [Wiley]
卷期号:72 (9): 783-789 被引量:5
标识
DOI:10.1002/pi.6522
摘要

Abstract Constructing dynamic covalent bonds (DCBs) in rubbers provides a promising avenue to resolve the trade‐offs between chemical crosslinking and recyclability. The reinforcement of dynamic covalent networks by nanofilling is widely adopted, which, however, inevitably hinders the exchange reaction of DCBs and network rearrangement due to the restrictions on chain mobility imposed by fillers. To date, the reinforcement of dynamic covalent networks without affecting the dynamic properties remains challenging. In this work, we report a dual dynamic crosslinking strategy by engineering reversible noncovalent bonds into dynamic covalent rubbers to improve mechanical performance and simultaneously maintain desirable malleability and reprocessability. Specifically, dynamic boronic ester‐crosslinked styrene–butadiene rubber is firstly prepared and then modified through triazolinedione (TAD) click reaction. The grafted urazole groups can form hydrogen bond interactions that further aggregate to form clusters and phase‐separation structure in the networks. Due to the reversible nature of hydrogen bonds, they can act in a sacrificial manner to dissipate mechanical energy, leading to a combination of improved strength, modulus and toughness of the networks. More importantly, the hydrogen‐bonded clusters are dissociated at elevated temperatures, enabling the network dynamic properties to be largely preserved. In addition, the dynamic features of the dual crosslinks (hydrogen bonds and boronic esters) endow the TAD‐modified networks with reconfigurable shape memory effect. © 2023 Society of Industrial Chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Agoni完成签到,获得积分10
刚刚
Daryl完成签到,获得积分10
刚刚
Yurrrrt完成签到,获得积分10
1秒前
Ting完成签到 ,获得积分10
1秒前
scl123发布了新的文献求助10
2秒前
interest-li发布了新的文献求助10
3秒前
悠夏sunny完成签到,获得积分10
4秒前
小马甲应助千殇采纳,获得10
4秒前
你长得很下饭所以完成签到,获得积分10
4秒前
Orange应助蒋蒋蒋采纳,获得10
5秒前
充电宝应助华仔采纳,获得10
6秒前
kingwhitewing完成签到,获得积分10
6秒前
jphu完成签到,获得积分10
6秒前
吕万鹏完成签到,获得积分10
6秒前
勤劳冰烟完成签到,获得积分10
7秒前
JING完成签到,获得积分10
7秒前
啥时候能退休完成签到,获得积分10
7秒前
Nathan完成签到,获得积分10
8秒前
英俊的铭应助浮生采纳,获得10
8秒前
8秒前
8秒前
博修发布了新的文献求助10
9秒前
wzn完成签到,获得积分10
10秒前
10秒前
11秒前
Qyyy发布了新的文献求助10
11秒前
大肉猪完成签到,获得积分10
11秒前
聪慧听南完成签到,获得积分10
11秒前
科研通AI5应助ssss采纳,获得10
12秒前
啵叽一口完成签到 ,获得积分10
12秒前
13秒前
13秒前
好好学习完成签到,获得积分10
13秒前
cheng应助wzn采纳,获得10
13秒前
小美酱完成签到 ,获得积分10
13秒前
nnn完成签到,获得积分10
13秒前
14秒前
朱猪仔发布了新的文献求助10
14秒前
Jasper应助满怀采纳,获得10
14秒前
牙鸟完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912