Dual dynamic crosslinking of rubber for enhanced mechanical properties and reconfigurable shape memory behavior

共价键 氢键 动态力学分析 天然橡胶 材料科学 动态共价化学 韧性 非共价相互作用 高分子化学 化学 复合材料 分子 聚合物 有机化学 超分子化学
作者
Zhenghai Tang,Yi Chen,Chengfeng Zhang,Siwu Wu,Baochun Guo,Liqun Zhang
出处
期刊:Polymer International [Wiley]
卷期号:72 (9): 783-789 被引量:5
标识
DOI:10.1002/pi.6522
摘要

Abstract Constructing dynamic covalent bonds (DCBs) in rubbers provides a promising avenue to resolve the trade‐offs between chemical crosslinking and recyclability. The reinforcement of dynamic covalent networks by nanofilling is widely adopted, which, however, inevitably hinders the exchange reaction of DCBs and network rearrangement due to the restrictions on chain mobility imposed by fillers. To date, the reinforcement of dynamic covalent networks without affecting the dynamic properties remains challenging. In this work, we report a dual dynamic crosslinking strategy by engineering reversible noncovalent bonds into dynamic covalent rubbers to improve mechanical performance and simultaneously maintain desirable malleability and reprocessability. Specifically, dynamic boronic ester‐crosslinked styrene–butadiene rubber is firstly prepared and then modified through triazolinedione (TAD) click reaction. The grafted urazole groups can form hydrogen bond interactions that further aggregate to form clusters and phase‐separation structure in the networks. Due to the reversible nature of hydrogen bonds, they can act in a sacrificial manner to dissipate mechanical energy, leading to a combination of improved strength, modulus and toughness of the networks. More importantly, the hydrogen‐bonded clusters are dissociated at elevated temperatures, enabling the network dynamic properties to be largely preserved. In addition, the dynamic features of the dual crosslinks (hydrogen bonds and boronic esters) endow the TAD‐modified networks with reconfigurable shape memory effect. © 2023 Society of Industrial Chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
承影完成签到,获得积分10
刚刚
枫叶应助周周采纳,获得10
刚刚
从容的小虾米应助周周采纳,获得10
刚刚
小二郎应助榴莲采纳,获得10
刚刚
英姑应助自然的致远采纳,获得10
1秒前
天天快乐应助默默的巧荷采纳,获得10
1秒前
1秒前
小刘忙发布了新的文献求助10
1秒前
冷静的小虾米完成签到,获得积分10
2秒前
2秒前
孙闹闹发布了新的文献求助10
2秒前
承影发布了新的文献求助10
3秒前
HaroldNguyen发布了新的文献求助30
3秒前
wen发布了新的文献求助10
3秒前
3秒前
11z完成签到,获得积分10
4秒前
5秒前
5秒前
科研牛马完成签到,获得积分10
6秒前
SciGPT应助稳重的峻熙采纳,获得10
6秒前
小马甲应助早点发SCI采纳,获得10
6秒前
6秒前
7秒前
小二郎应助汤姆采纳,获得30
7秒前
chel应助kk采纳,获得10
8秒前
liuliu发布了新的文献求助30
9秒前
怕孤独的思山完成签到,获得积分10
9秒前
9秒前
11秒前
共享精神应助tsunami采纳,获得30
11秒前
la发布了新的文献求助10
11秒前
蔡蔡完成签到,获得积分10
11秒前
12秒前
entity发布了新的文献求助10
12秒前
13秒前
cocolu应助自觉雅柏采纳,获得10
13秒前
13秒前
李健应助张张采纳,获得10
14秒前
林楠笙发布了新的文献求助10
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444265
求助须知:如何正确求助?哪些是违规求助? 3040376
关于积分的说明 8980892
捐赠科研通 2728958
什么是DOI,文献DOI怎么找? 1496770
科研通“疑难数据库(出版商)”最低求助积分说明 691880
邀请新用户注册赠送积分活动 689396