双金属片
选择性
催化作用
电化学
密度泛函理论
氧化还原
合金
化学
材料科学
化学工程
无机化学
计算化学
物理化学
电极
有机化学
冶金
工程类
作者
Xin Zhou,Xin Zhou,Yixin Wang,Gang Chen,Ming‐Xia Li
出处
期刊:Molecules
[MDPI AG]
日期:2023-04-02
卷期号:28 (7): 3169-3169
被引量:5
标识
DOI:10.3390/molecules28073169
摘要
The electrochemical carbon dioxide reduction reaction (CO2RR) has emerged as a promising approach to addressing global energy and environmental challenges. Alloys are of particular importance in these applications due to their unique chemical and physical properties. In this study, the possible mechanism of the C1 products from the electrochemical reduction of CO2 on four different surfaces of Pd3Au alloy bimetallic catalysts is predicted using the density functional theory. The differences in the number of d-band electrons and the charge distribution and morphology of the different surfaces result in differing catalytic activity and selectivity on the same surface. On different surfaces, Pd3Au alloy bimetallic catalysts have different potential limiting steps in CO2RR, resulting in differing selectivity. The Pd3Au (100) surface has a good selectivity for HER, indicating that the increase in the net charge on the surface of the alloy improves the selectivity for HER. The Pd3Au (211) surface, with a step structure, shows a good selectivity for methanol production from CO2RR. In addition, an electronic structure analysis shows that the selectivity of the reactions involved in the conversion of adsorbates is determined by the difference between the center of the d-band on the top of the catalyst, where the reactant and the product are located. The results of this study may provide some theoretical basis for designing and developing more efficient and selective CO2 reduction catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI