Predicting thalassemia using deep neural network based on red blood cell indices

红细胞分布宽度 尤登J统计 平均红细胞体积 地中海贫血 接收机工作特性 人工神经网络 人工智能 统计 预测值 模式识别(心理学) 数学 计算机科学 内科学 医学 血红蛋白
作者
Donghua Mo,Qian Zheng,Bin Xiao,Linhai Li
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:543: 117329-117329 被引量:12
标识
DOI:10.1016/j.cca.2023.117329
摘要

The traditional statistical screening method for thalassemia based on red blood cell (RBC) indices is being replaced by machine learning. Here, we developed deep neural networks (DNNs) that outperformed the traditional method for predicting thalassemia.Using a dataset of 8693 records comprising genetic tests and other 11 features we constructed 11 DNN models and 4 traditional statistical models and then compared their performances and analysed feature importance for interpreting DNN models.The area under the receiver operating characteristic curve, accuracy, Youden's index, F1 score, sensitivity, specificity, positive predictive value and negative predictive value, were 0.960, 0.897, 0.794, 0.897, 0.883, 0.911, 0.914, and 0.882, respectively, for our best model, and compared with the traditional statistical model based on the mean corpuscular volume, these values were increased by 10.22%, 10.09%, 26.55%, 8.92%, 4.13%, 16.90%, 13.86% and 6.07%, respectively, and by 15.38%, 11.70%, 31.70%, 9.89%, 3.05%, 22.13%, 17.11% and 5.94%, respectively, for the mean cellular haemoglobin model. The DNN model performance will reduce without age, RBC distribution width (RDW), sex, or both WBC and PLT.Our DNN model outperformed the current screening model. In 8 features, RDW and age were the most useful, followed by sex and the combination of WBC and PLT, the remaining nearly useless.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助....采纳,获得10
刚刚
叶艳完成签到 ,获得积分10
刚刚
躺平girl发布了新的文献求助10
刚刚
健忘的安萱完成签到,获得积分20
刚刚
二龙湖完成签到,获得积分10
刚刚
饼饼完成签到,获得积分10
刚刚
司藤完成签到 ,获得积分10
1秒前
advance完成签到,获得积分10
1秒前
可爱的函函应助qq采纳,获得10
1秒前
何劲松完成签到,获得积分10
1秒前
冷静新烟发布了新的文献求助10
2秒前
Mat应助11楼阿水采纳,获得10
2秒前
2秒前
shadow发布了新的文献求助30
2秒前
伶俐的不尤完成签到,获得积分10
3秒前
3秒前
夜幕应助清辉夜凝采纳,获得20
3秒前
3秒前
4秒前
soyo完成签到 ,获得积分10
4秒前
4秒前
英姑应助儒雅的忆翠采纳,获得10
4秒前
fufu符发布了新的文献求助10
4秒前
lllll完成签到,获得积分10
4秒前
我是老大应助mch采纳,获得10
5秒前
5秒前
TaiLongYang发布了新的文献求助10
6秒前
xkysxka发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
长大lwp完成签到,获得积分10
7秒前
7秒前
东西南北发布了新的文献求助10
8秒前
热心的寒天完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
8秒前
jin发布了新的文献求助10
9秒前
9秒前
领导范儿应助lddd采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573107
求助须知:如何正确求助?哪些是违规求助? 3993602
关于积分的说明 12363019
捐赠科研通 3666834
什么是DOI,文献DOI怎么找? 2020933
邀请新用户注册赠送积分活动 1055090
科研通“疑难数据库(出版商)”最低求助积分说明 942509