Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101886-101886 被引量:32
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善良谷蓝发布了新的文献求助10
1秒前
Owen应助clyhg采纳,获得10
2秒前
可可coco发布了新的文献求助10
2秒前
苏苏完成签到 ,获得积分10
2秒前
小铭同学完成签到,获得积分10
3秒前
3秒前
情怀应助BUlKY采纳,获得10
3秒前
kk发布了新的文献求助10
4秒前
爆米花应助Hannah采纳,获得10
4秒前
4秒前
puchang007发布了新的文献求助10
4秒前
4秒前
goob发布了新的文献求助10
5秒前
dly发布了新的文献求助10
6秒前
6秒前
英俊的铭应助粗心的菀采纳,获得10
7秒前
小铭同学发布了新的文献求助10
7秒前
7秒前
9秒前
乐观小之应助爱学习的YY采纳,获得10
9秒前
量子星尘发布了新的文献求助30
9秒前
bkagyin应助筱xiao采纳,获得10
10秒前
233asd发布了新的文献求助10
10秒前
Hilda007应助可可coco采纳,获得10
11秒前
曹雪峰发布了新的文献求助10
11秒前
Hilda007应助可可coco采纳,获得10
11秒前
顾矜应助李晴采纳,获得10
11秒前
11秒前
潇洒哥完成签到,获得积分10
11秒前
形随将至发布了新的文献求助10
13秒前
ding应助小白采纳,获得10
14秒前
wangrr完成签到,获得积分10
14秒前
浮游应助现代子默采纳,获得10
15秒前
miao发布了新的文献求助10
15秒前
沉默小虾米完成签到,获得积分10
15秒前
打打应助just123采纳,获得30
15秒前
李富贵发布了新的文献求助10
16秒前
橙花完成签到 ,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112228
求助须知:如何正确求助?哪些是违规求助? 4320045
关于积分的说明 13460869
捐赠科研通 4151114
什么是DOI,文献DOI怎么找? 2274574
邀请新用户注册赠送积分活动 1276405
关于科研通互助平台的介绍 1214632