Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101886-101886 被引量:74
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽小猫咪举报ddj求助涉嫌违规
1秒前
zhuniyukuai完成签到,获得积分10
1秒前
2秒前
2秒前
nan发布了新的文献求助10
6秒前
Lulu完成签到,获得积分10
6秒前
李爱国应助快乐的元正采纳,获得10
6秒前
辛勤金连完成签到,获得积分10
8秒前
ZHANG完成签到,获得积分10
8秒前
玩命的书琴完成签到,获得积分10
8秒前
烧饼拌糖完成签到,获得积分10
9秒前
研友_VZG7GZ应助Zp采纳,获得10
9秒前
可爱的函函应助壮观梦易采纳,获得10
13秒前
周全敏完成签到 ,获得积分10
14秒前
dalei001完成签到 ,获得积分10
15秒前
16秒前
歪歪完成签到,获得积分10
17秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
17秒前
18秒前
糯米种子完成签到,获得积分10
19秒前
20秒前
llllll完成签到,获得积分10
21秒前
Lyue发布了新的文献求助10
21秒前
林非鹿发布了新的文献求助30
21秒前
科目三应助苗条的寒珊采纳,获得10
24秒前
大龙哥886应助大力的问蕊采纳,获得10
25秒前
25秒前
黎娅完成签到 ,获得积分10
26秒前
mjc完成签到 ,获得积分10
27秒前
andy完成签到,获得积分10
27秒前
Orange应助ttg990720采纳,获得10
27秒前
科研通AI2S应助葡萄柚采纳,获得10
29秒前
nn完成签到,获得积分10
29秒前
英俊的铭应助幸福台灯采纳,获得10
30秒前
bingsu108完成签到,获得积分10
31秒前
31秒前
31秒前
顾矜应助楼梯口无头女孩采纳,获得10
32秒前
FashionBoy应助明理慕灵采纳,获得10
33秒前
英俊的铭应助歪歪采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281