Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101886-101886 被引量:32
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡发布了新的文献求助10
1秒前
直率绮梅发布了新的文献求助10
2秒前
冲塔亚德发布了新的文献求助10
2秒前
天天快乐应助dayou采纳,获得10
3秒前
飘逸雨珍发布了新的文献求助10
3秒前
Owen应助66采纳,获得10
3秒前
秋中雨完成签到,获得积分10
3秒前
顾矜应助白羊采纳,获得10
4秒前
奇拉维特完成签到 ,获得积分10
4秒前
Hello应助大聪明采纳,获得10
4秒前
4秒前
华仔应助Ampace小老弟采纳,获得10
5秒前
香蕉觅云应助陶醉水云采纳,获得10
5秒前
5秒前
6秒前
zz完成签到,获得积分10
7秒前
7秒前
酷炫小伙完成签到,获得积分10
7秒前
852应助整齐芷文采纳,获得10
8秒前
哈哈哈完成签到,获得积分10
8秒前
P值有星发布了新的文献求助20
8秒前
9秒前
情怀应助tivyg'lk采纳,获得30
9秒前
111完成签到,获得积分10
10秒前
10秒前
烟花应助呆呆采纳,获得10
10秒前
10秒前
10秒前
最初的梦想完成签到,获得积分10
11秒前
11秒前
科目三应助Daisy采纳,获得30
11秒前
申小萌发布了新的文献求助100
11秒前
AnnChen发布了新的文献求助10
11秒前
酷酷含羞草完成签到,获得积分10
12秒前
13秒前
复杂焱发布了新的文献求助10
13秒前
大聪明完成签到,获得积分20
13秒前
hh完成签到,获得积分10
13秒前
CipherSage应助戴戴采纳,获得10
14秒前
1024发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847