Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101886-101886 被引量:32
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fezz完成签到 ,获得积分10
刚刚
1秒前
2秒前
音玥完成签到,获得积分10
3秒前
fish完成签到,获得积分10
4秒前
4秒前
g_f发布了新的文献求助20
5秒前
爆米花应助45度人采纳,获得20
5秒前
在水一方应助目分采纳,获得10
7秒前
巴黎的防发布了新的文献求助10
9秒前
柳柳应助科研通管家采纳,获得30
11秒前
大模型应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
wu8577应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
wu8577应助科研通管家采纳,获得10
11秒前
肖守玉完成签到,获得积分10
12秒前
南风完成签到,获得积分10
12秒前
13秒前
ghmghm9910完成签到 ,获得积分10
13秒前
今晚吃什么完成签到,获得积分10
13秒前
17完成签到,获得积分10
17秒前
wangayting发布了新的文献求助10
17秒前
bean发布了新的文献求助10
18秒前
共享精神应助天赐殊荣采纳,获得10
19秒前
Rondab应助好运莲莲采纳,获得10
20秒前
22秒前
脑洞疼应助bean采纳,获得10
22秒前
闫佳美发布了新的文献求助20
22秒前
nan完成签到,获得积分10
24秒前
26秒前
luna完成签到,获得积分0
26秒前
Johnny完成签到,获得积分10
27秒前
秦婉琦发布了新的文献求助10
27秒前
uuunnn发布了新的文献求助10
27秒前
bean完成签到,获得积分10
27秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474