Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101886-101886 被引量:32
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
李爱国应助科研小白采纳,获得10
刚刚
刚刚
哇塞的完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得30
1秒前
称心曼安应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得150
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得150
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
归尘发布了新的文献求助10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
ahua完成签到 ,获得积分10
2秒前
鱼丸完成签到 ,获得积分10
3秒前
lululu发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
林摆摆完成签到,获得积分10
4秒前
Owen应助Antares采纳,获得100
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
羊羊羊发布了新的文献求助10
6秒前
趣多多完成签到 ,获得积分10
7秒前
田様应助迪迪发C刊采纳,获得10
7秒前
yy完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355349
求助须知:如何正确求助?哪些是违规求助? 4487278
关于积分的说明 13969341
捐赠科研通 4387889
什么是DOI,文献DOI怎么找? 2410706
邀请新用户注册赠送积分活动 1403256
关于科研通互助平台的介绍 1376810