Hardware Trojan Detection Using Machine Learning: A Tutorial

硬件特洛伊木马 计算机科学 特洛伊木马 硬件安全模块 功率分析 嵌入式系统 集成电路 供应链 功率(物理) 计算机安全 密码学 操作系统 政治学 量子力学 物理 法学
作者
Kevin Immanuel Gubbi,Banafsheh Saber Latibari,Anirudh Srikanth,Tyler Sheaves,Sayed Arash Beheshti-Shirazi,Sai Manoj PD,Satareh Rafatirad,Avesta Sasan,Houman Homayoun,Soheil Salehi
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (3): 1-26 被引量:15
标识
DOI:10.1145/3579823
摘要

With the growth and globalization of IC design and development, there is an increase in the number of Designers and Design houses. As setting up a fabrication facility may easily cost upwards of $20 billion, costs for advanced nodes may be even greater. IC design houses that cannot produce their chips in-house have no option but to use external foundries that are often in other countries. Establishing trust with these external foundries can be a challenge, and these foundries are assumed to be untrusted. The use of these untrusted foundries in the global semiconductor supply chain has raised concerns about the security of the fabricated ICs targeted for sensitive applications. One of these security threats is the adversarial infestation of fabricated ICs with a Hardware Trojan (HT) . An HT can be broadly described as a malicious modification to a circuit to control, modify, disable, or monitor its logic. Conventional VLSI manufacturing tests and verification methods fail to detect HT due to the different and un-modeled nature of these malicious modifications. Current state-of-the-art HT detection methods utilize statistical analysis of various side-channel information collected from ICs, such as power analysis, power supply transient analysis, regional supply current analysis, temperature analysis, wireless transmission power analysis, and delay analysis. To detect HTs, most methods require a Trojan-free reference golden IC. A signature from these golden ICs is extracted and used to detect ICs with HTs. However, access to a golden IC is not always feasible. Thus, a mechanism for HT detection is sought that does not require the golden IC. Machine Learning (ML) approaches have emerged to be extremely useful in helping eliminate the need for a golden IC. Recent works on utilizing ML for HT detection have been shown to be promising in achieving this goal. Thus, in this tutorial, we will explain utilizing ML as a solution to the challenge of HT detection. Additionally, we will describe the Electronic Design Automation (EDA) tool flow for automating ML-assisted HT detection. Moreover, to further discuss the benefits of ML-assisted HT detection solutions, we will demonstrate a Neural Network (NN) -assisted timing profiling method for HT detection. Finally, we will discuss the shortcomings and open challenges of ML-assisted HT detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木发布了新的文献求助30
刚刚
yee完成签到,获得积分10
刚刚
科研通AI2S应助俊逸鸣凤采纳,获得10
刚刚
斯文败类应助蓝天白云采纳,获得10
1秒前
甜甜玫瑰应助蓝天白云采纳,获得10
1秒前
1秒前
星辰大海应助蓝天白云采纳,获得10
1秒前
深情安青应助背后的幻巧采纳,获得20
1秒前
glory_c应助蓝天白云采纳,获得10
1秒前
薰硝壤应助蓝天白云采纳,获得10
1秒前
薰硝壤应助蓝天白云采纳,获得30
1秒前
我是老大应助天天采纳,获得10
1秒前
曾经的秋寒完成签到,获得积分10
1秒前
zjgjnu完成签到,获得积分10
2秒前
星辰大海应助以琳采纳,获得10
3秒前
4秒前
YC完成签到,获得积分10
4秒前
正直的火发布了新的文献求助10
4秒前
调研昵称发布了新的文献求助10
6秒前
研ZZ发布了新的文献求助20
7秒前
8秒前
努力看文献的小杨完成签到,获得积分10
9秒前
湛蓝飞翔发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助蓝天白云采纳,获得10
10秒前
KYDZZ应助蓝天白云采纳,获得10
10秒前
寒冷山柳应助蓝天白云采纳,获得10
10秒前
Singularity应助蓝天白云采纳,获得10
10秒前
科研通AI2S应助蓝天白云采纳,获得10
10秒前
oceanao应助蓝天白云采纳,获得10
10秒前
10秒前
oceanao应助蓝天白云采纳,获得10
10秒前
Yola发布了新的文献求助10
11秒前
木木完成签到,获得积分10
11秒前
11秒前
辣比小欣完成签到,获得积分10
11秒前
12秒前
13秒前
Jun应助Elian采纳,获得10
13秒前
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919