Research on Tibetan Speech Recognition Based on CNN-DFSMN-CTC

计算机科学 声学模型 语音识别 卷积神经网络 卷积(计算机科学) 人工智能 隐马尔可夫模型 模式识别(心理学) 特征(语言学) 人工神经网络 领域(数学分析) 特征提取 集合(抽象数据类型) 语音处理 数学分析 语言学 哲学 数学 程序设计语言
作者
Zhenye Gan,Zhenxing Kong,Min Zhang
标识
DOI:10.1109/epce58798.2023.00044
摘要

In this paper, we present an improved acoustic model CNN-DFSMN , and it uses CNN to study local frequency domain and time domain features ,and introduces skip connections between memory blocks in adjacent layers, thus alleviating the problem of gradient disappearance when building very deep structures. In recent years, the acoustic model based on Connected Temporal Classification (CTC) has achieved good performance in speech recognition. Generally, lstm-type networks are used as acoustic models in CTC. However, LSTM calculation cost is high and sometimes it is hard to train CTC criteria. This paper, Be inspired by DFSMN's work, we replace LSTM with DFSMN in the acoustic modeling based on CCT, then combine convolution neural network (CNN) with this architecture to train an acoustic model based on CNN-DFSMN-CTC, match the acoustic model with the 3-gram language model, and combine dictionary and acoustic feature vector to identify and decode the recognition text. This further improves the performance of Tibetan speech recognition. The last experiment results show that the WER of DFSMN-CTC based methods is 2.34% and 0.94% higher than that of CNN-CTC based and LSTM-CTC based methods under the same test set. The recognition rate based on CNN-DFSMN-CTC is 3.52% and 2.23% higher than that based on DFSMN and DFSMN-CTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxseva完成签到,获得积分10
刚刚
无语的从云完成签到,获得积分10
刚刚
zhanzhanzhan完成签到,获得积分10
刚刚
刚刚
王王完成签到 ,获得积分10
1秒前
1秒前
笨笨熊发布了新的文献求助10
1秒前
一直发布了新的文献求助10
2秒前
CodeCraft应助无恃有恐采纳,获得10
2秒前
3秒前
欢喜的凡发布了新的文献求助10
3秒前
xuuuuu完成签到,获得积分10
3秒前
3秒前
3秒前
yliu完成签到,获得积分10
3秒前
九方嘉许应助tongtong采纳,获得10
3秒前
yana完成签到,获得积分10
4秒前
4秒前
ZzRG完成签到,获得积分10
4秒前
5秒前
仲半邪完成签到,获得积分10
5秒前
阿尔法突触核蛋白完成签到,获得积分10
5秒前
smmu008完成签到,获得积分10
5秒前
kagami应助ikear采纳,获得30
5秒前
5秒前
5秒前
嘻嘻哈哈完成签到 ,获得积分10
5秒前
BiuBiu怪完成签到,获得积分10
5秒前
6秒前
简简单单完成签到,获得积分10
6秒前
Clover完成签到 ,获得积分0
6秒前
8秒前
搬砖完成签到,获得积分10
8秒前
maoamo2024完成签到,获得积分10
8秒前
紫愿发布了新的文献求助10
8秒前
cc完成签到 ,获得积分10
8秒前
9秒前
奥斯卡完成签到,获得积分0
9秒前
打打应助烂漫的成风采纳,获得10
9秒前
pcr163应助香蕉吃鱼采纳,获得50
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060