Machine Learning Prediction of Adsorption Behavior of Xenobiotics on Microplastics under Different Environmental Conditions

微塑料 异型生物质的 环境化学 化学 吸附 环境科学 生物系统 生物 生物化学 有机化学
作者
Michael Bryant,Xingmao Ma
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 991-999 被引量:7
标识
DOI:10.1021/acsestwater.3c00151
摘要

There have been mounting concerns over microplastics as a vector of environmental xenobiotics recently. Adsorption plays a pivotal role in this process, which varies with the properties of xenobiotics, the characteristics of microplastics, and environmental conditions. The vast number of xenobiotics and the diversity of microplastics, as well as the continuous weathering of microplastics in the environment, make it unrealistic to measure the adsorption capacity and affinity of each combination of xenobiotics, microplastics, and environmental conditions in laboratory studies. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were used to predict the adsorption affinity of xenobiotics on microplastics and elucidate the impact of environmental parameters. pH is responsible for a large variation in the results through its effect on the dissociation of ionizable xenobiotics and the surface charge of microplastics. The aging status of microplastics had a smaller but still significant impact on adsorption affinity, with pristine particles generally having a higher affinity. The results shed light on the potential alteration of the fate and impact of xenobiotics by microplastics. As more data become available in the future, the precision of machine learning (ML) models can be further improved. Overall, our study demonstrated the potential of ML in predicting the adsorption of a wide range of xenobiotics on microplastics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
pluto应助小玲玲采纳,获得10
2秒前
3秒前
LL发布了新的文献求助10
4秒前
勤劳寒烟完成签到,获得积分10
4秒前
ldkl应助子虚一尘采纳,获得60
4秒前
树林红了完成签到,获得积分10
5秒前
聪慧的小伙完成签到,获得积分10
5秒前
5秒前
5秒前
搜集达人应助嗷嗷采纳,获得10
5秒前
科研通AI5应助生动的翠容采纳,获得10
5秒前
万能图书馆应助背后如雪采纳,获得10
6秒前
轻松板栗发布了新的文献求助10
6秒前
小叶完成签到,获得积分10
6秒前
鲸鱼发布了新的文献求助10
6秒前
OrangeBlueHeart完成签到,获得积分10
7秒前
次我完成签到,获得积分10
7秒前
7秒前
kirakira完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
8秒前
吴某完成签到,获得积分20
9秒前
慕青应助皮蛋solo粥采纳,获得30
9秒前
发论文完成签到 ,获得积分10
9秒前
南松发布了新的文献求助10
9秒前
9秒前
Rubby应助dfsdf采纳,获得10
9秒前
小明应助dfsdf采纳,获得10
9秒前
李健的小迷弟应助PaoPao采纳,获得10
10秒前
10秒前
CipherSage应助wzl采纳,获得10
10秒前
小巧风华发布了新的文献求助10
10秒前
反方向的钟完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403