Machine Learning Prediction of Adsorption Behavior of Xenobiotics on Microplastics under Different Environmental Conditions

微塑料 异型生物质的 环境化学 化学 吸附 环境科学 生物系统 生物 生物化学 有机化学
作者
Michael Bryant,Xingmao Ma
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 991-999 被引量:7
标识
DOI:10.1021/acsestwater.3c00151
摘要

There have been mounting concerns over microplastics as a vector of environmental xenobiotics recently. Adsorption plays a pivotal role in this process, which varies with the properties of xenobiotics, the characteristics of microplastics, and environmental conditions. The vast number of xenobiotics and the diversity of microplastics, as well as the continuous weathering of microplastics in the environment, make it unrealistic to measure the adsorption capacity and affinity of each combination of xenobiotics, microplastics, and environmental conditions in laboratory studies. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were used to predict the adsorption affinity of xenobiotics on microplastics and elucidate the impact of environmental parameters. pH is responsible for a large variation in the results through its effect on the dissociation of ionizable xenobiotics and the surface charge of microplastics. The aging status of microplastics had a smaller but still significant impact on adsorption affinity, with pristine particles generally having a higher affinity. The results shed light on the potential alteration of the fate and impact of xenobiotics by microplastics. As more data become available in the future, the precision of machine learning (ML) models can be further improved. Overall, our study demonstrated the potential of ML in predicting the adsorption of a wide range of xenobiotics on microplastics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助唐小颖采纳,获得10
刚刚
赘婿应助啊哦采纳,获得10
刚刚
李健的小迷弟应助zqh采纳,获得10
刚刚
木木川发布了新的文献求助10
刚刚
水博士发布了新的文献求助10
1秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
2秒前
一线西风发布了新的文献求助10
2秒前
hanhanhan发布了新的文献求助50
2秒前
AJ发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
kkkhhh发布了新的文献求助10
4秒前
天天快乐应助SEV采纳,获得10
4秒前
悦耳安莲完成签到,获得积分20
4秒前
传奇3应助张123采纳,获得10
4秒前
zgh5615完成签到,获得积分10
4秒前
Taki发布了新的文献求助10
4秒前
星辰大海应助Duxize采纳,获得10
6秒前
6秒前
7秒前
cj发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
开心夏旋完成签到,获得积分10
11秒前
嘞是举仔应助专注的草丛采纳,获得20
12秒前
好好好完成签到,获得积分10
12秒前
洁净如音完成签到,获得积分10
12秒前
wheeler1发布了新的文献求助10
12秒前
浮云发布了新的文献求助30
13秒前
13秒前
13秒前
Redamancy完成签到,获得积分10
14秒前
盒子完成签到,获得积分20
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420