Machine Learning Prediction of Adsorption Behavior of Xenobiotics on Microplastics under Different Environmental Conditions

微塑料 异型生物质的 环境化学 化学 吸附 环境科学 生物系统 生物 生物化学 有机化学
作者
Michael Bryant,Xingmao Ma
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 991-999 被引量:7
标识
DOI:10.1021/acsestwater.3c00151
摘要

There have been mounting concerns over microplastics as a vector of environmental xenobiotics recently. Adsorption plays a pivotal role in this process, which varies with the properties of xenobiotics, the characteristics of microplastics, and environmental conditions. The vast number of xenobiotics and the diversity of microplastics, as well as the continuous weathering of microplastics in the environment, make it unrealistic to measure the adsorption capacity and affinity of each combination of xenobiotics, microplastics, and environmental conditions in laboratory studies. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were used to predict the adsorption affinity of xenobiotics on microplastics and elucidate the impact of environmental parameters. pH is responsible for a large variation in the results through its effect on the dissociation of ionizable xenobiotics and the surface charge of microplastics. The aging status of microplastics had a smaller but still significant impact on adsorption affinity, with pristine particles generally having a higher affinity. The results shed light on the potential alteration of the fate and impact of xenobiotics by microplastics. As more data become available in the future, the precision of machine learning (ML) models can be further improved. Overall, our study demonstrated the potential of ML in predicting the adsorption of a wide range of xenobiotics on microplastics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangya应助韦颖采纳,获得10
刚刚
Kyrie发布了新的文献求助10
刚刚
1秒前
Kiosta完成签到,获得积分20
1秒前
2秒前
3秒前
Langran发布了新的文献求助200
3秒前
3秒前
4秒前
积极的邪欢完成签到,获得积分10
5秒前
眼睛大雨筠应助苗儿采纳,获得30
5秒前
小蘑菇应助H1采纳,获得10
5秒前
5秒前
llllllll完成签到,获得积分10
5秒前
傅老师完成签到,获得积分10
5秒前
6秒前
文静野狼发布了新的文献求助10
6秒前
我是老大应助菲菲采纳,获得10
6秒前
追梦人发布了新的文献求助10
6秒前
7秒前
7秒前
开放的大侠完成签到,获得积分10
8秒前
知性的千秋完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
松山少林学武功完成签到 ,获得积分10
9秒前
9秒前
黑豆也完成签到,获得积分10
10秒前
10秒前
英俊的铭应助民工采纳,获得10
11秒前
11秒前
lizz发布了新的文献求助10
11秒前
辉0721发布了新的文献求助10
12秒前
12秒前
大胆的平凡完成签到,获得积分10
13秒前
13秒前
14秒前
溏心蛋发布了新的文献求助10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053