亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Prediction of Adsorption Behavior of Xenobiotics on Microplastics under Different Environmental Conditions

微塑料 异型生物质的 环境化学 化学 吸附 环境科学 生物系统 生物 生物化学 有机化学
作者
Michael Bryant,Xingmao Ma
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 991-999 被引量:7
标识
DOI:10.1021/acsestwater.3c00151
摘要

There have been mounting concerns over microplastics as a vector of environmental xenobiotics recently. Adsorption plays a pivotal role in this process, which varies with the properties of xenobiotics, the characteristics of microplastics, and environmental conditions. The vast number of xenobiotics and the diversity of microplastics, as well as the continuous weathering of microplastics in the environment, make it unrealistic to measure the adsorption capacity and affinity of each combination of xenobiotics, microplastics, and environmental conditions in laboratory studies. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were used to predict the adsorption affinity of xenobiotics on microplastics and elucidate the impact of environmental parameters. pH is responsible for a large variation in the results through its effect on the dissociation of ionizable xenobiotics and the surface charge of microplastics. The aging status of microplastics had a smaller but still significant impact on adsorption affinity, with pristine particles generally having a higher affinity. The results shed light on the potential alteration of the fate and impact of xenobiotics by microplastics. As more data become available in the future, the precision of machine learning (ML) models can be further improved. Overall, our study demonstrated the potential of ML in predicting the adsorption of a wide range of xenobiotics on microplastics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的语芙完成签到,获得积分10
5秒前
善学以致用应助帅气书白采纳,获得10
8秒前
9秒前
12秒前
15秒前
七面东风完成签到,获得积分10
16秒前
科研通AI6应助neko采纳,获得10
20秒前
23秒前
侯锐淇完成签到 ,获得积分10
26秒前
28秒前
xiaowang发布了新的文献求助10
29秒前
moodlunatic发布了新的文献求助30
34秒前
qiuzhu_完成签到 ,获得积分10
39秒前
xiaowang完成签到,获得积分10
39秒前
ceeray23发布了新的文献求助20
39秒前
Hello应助小杨采纳,获得10
40秒前
123456完成签到,获得积分10
45秒前
moodlunatic完成签到,获得积分10
46秒前
48秒前
123456发布了新的文献求助20
49秒前
清爽冬莲完成签到 ,获得积分0
55秒前
57秒前
qiuzhu_发布了新的文献求助10
1分钟前
1分钟前
鲤鱼发布了新的文献求助10
1分钟前
Yiyong发布了新的文献求助20
1分钟前
1分钟前
1分钟前
科研通AI6应助古兰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Nickzzz发布了新的文献求助10
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
草莓星发布了新的文献求助10
1分钟前
Yanhai发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262