Machine Learning Prediction of Adsorption Behavior of Xenobiotics on Microplastics under Different Environmental Conditions

微塑料 异型生物质的 环境化学 化学 吸附 环境科学 生物系统 生物 生物化学 有机化学
作者
Michael Bryant,Xingmao Ma
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 991-999 被引量:7
标识
DOI:10.1021/acsestwater.3c00151
摘要

There have been mounting concerns over microplastics as a vector of environmental xenobiotics recently. Adsorption plays a pivotal role in this process, which varies with the properties of xenobiotics, the characteristics of microplastics, and environmental conditions. The vast number of xenobiotics and the diversity of microplastics, as well as the continuous weathering of microplastics in the environment, make it unrealistic to measure the adsorption capacity and affinity of each combination of xenobiotics, microplastics, and environmental conditions in laboratory studies. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were used to predict the adsorption affinity of xenobiotics on microplastics and elucidate the impact of environmental parameters. pH is responsible for a large variation in the results through its effect on the dissociation of ionizable xenobiotics and the surface charge of microplastics. The aging status of microplastics had a smaller but still significant impact on adsorption affinity, with pristine particles generally having a higher affinity. The results shed light on the potential alteration of the fate and impact of xenobiotics by microplastics. As more data become available in the future, the precision of machine learning (ML) models can be further improved. Overall, our study demonstrated the potential of ML in predicting the adsorption of a wide range of xenobiotics on microplastics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
magneto发布了新的文献求助10
刚刚
刚刚
1秒前
张朝程发布了新的文献求助20
1秒前
科研通AI6应助似鱼采纳,获得20
1秒前
KalBlaze完成签到,获得积分10
1秒前
大模型应助123采纳,获得10
2秒前
tianya完成签到 ,获得积分10
2秒前
JamesPei应助悦耳念双采纳,获得10
2秒前
2秒前
3秒前
大个应助雷霆嘎巴采纳,获得30
3秒前
han完成签到,获得积分10
3秒前
kh453发布了新的文献求助10
3秒前
4秒前
桐桐应助褚驳采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
pcr163应助穆伟祺采纳,获得50
5秒前
汉堡包应助mao采纳,获得10
5秒前
5秒前
Hcx完成签到,获得积分20
6秒前
充电宝应助盐消采纳,获得10
6秒前
shc发布了新的文献求助10
6秒前
隐形曼青应助SH采纳,获得10
6秒前
科研通AI6应助美好凝莲采纳,获得10
6秒前
6秒前
好好好发布了新的文献求助10
6秒前
lll发布了新的文献求助10
7秒前
FashionBoy应助Luhh采纳,获得10
7秒前
7秒前
7秒前
7秒前
我是狗发布了新的文献求助10
7秒前
lynsan发布了新的文献求助10
7秒前
8秒前
8秒前
老大开飞机66完成签到,获得积分10
8秒前
董研完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381