Molecular insight into minimum miscibility pressure estimation of shale oil/CO2 in organic nanopores using CO2 huff-n-puff

纳米孔 油页岩 致密油 石油工程 混溶性 提高采收率 吸附 材料科学 化学工程 干酪根 页岩油 化学 地质学 复合材料 纳米技术 烃源岩 有机化学 工程类 聚合物 古生物学 构造盆地
作者
Qian Sun,Aabiskar Bhusal,Na Zhang,Kapil Adhikari
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:280: 119024-119024 被引量:34
标识
DOI:10.1016/j.ces.2023.119024
摘要

CO2-enhanced oil recovery (EOR) has been regarded as an essential means of tertiary oil recovery worldwide, which has been gradually applied in exploiting shale oil and gas resources. In this study, we proposed a new method to estimate the MMP (minimum miscibility pressure) of shale oil/CO2 systems using huff-n-puff molecular dynamics (MD) simulations. The bulk MMP of the shale oil/CO2 system obtained agrees reasonably well with the vanishing interfacial tension (VIT) and the available experimental results. The organic nanopore oil reservoir is modeled with graphene as a substrate and octane molecules as shale oil. We found that oil recovery increases up to near miscible pressure and plateaus after that. The oil recovery increases with the rise of the reservoir temperature and slit height. Due to the nanopore's confinement effect, the predicted MMP is lower inside the nanopore than the bulk counterpart. The MMP inside the nanopore decreases with a slit height up to a specific size and then starts to climb up due to the increased adsorption effect of nanopore walls. It means that CO2 flooding will be more efficient in shale oil reservoirs with more prominent pores and throats. Some CO2 molecules remain inside the nanopore after the completion of the huff-n-puff process. Like the oil recovery, the amount of CO2 trapped inside the pore after the huff-n-puff procedure plateaus after some critical pressure. So, CO2 huff-n-puff has two benefits — oil recovery and carbon sequestration. Our method of simulating huff-n-puff using MD can be a quick and economic supplement to the CO2-EOR experiments, which might benefit the development of shale oil reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助可乐加冰采纳,获得10
1秒前
1秒前
2秒前
tom发布了新的文献求助10
2秒前
wanci应助威武的人杰采纳,获得50
2秒前
龙仔完成签到 ,获得积分10
2秒前
Nic发布了新的文献求助10
3秒前
4秒前
4秒前
大萌发布了新的文献求助10
4秒前
4秒前
Owen应助三水采纳,获得10
5秒前
酷波er应助杨旭采纳,获得10
5秒前
5秒前
NexusExplorer应助感动的白梅采纳,获得10
5秒前
西奥发布了新的文献求助10
5秒前
长剑玉珥完成签到,获得积分10
5秒前
mika910完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
liao应助zwc采纳,获得10
7秒前
汉堡包应助无昵称采纳,获得10
7秒前
7秒前
sqcpk完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
小菜一碟完成签到,获得积分10
7秒前
ori完成签到,获得积分10
8秒前
SibetHu发布了新的文献求助10
9秒前
CodeCraft应助小华采纳,获得10
9秒前
9秒前
9秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
9秒前
典雅夏之完成签到,获得积分10
9秒前
hy发布了新的文献求助10
9秒前
9秒前
bkagyin应助啧啧啧采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440