A deep learning method combined with an electronic nose for gas information identification of soybean from different origins

电子鼻 人工智能 计算机科学 模式识别(心理学) 质量(理念) 残余物 块(置换群论) 特征(语言学) 数据挖掘 机器学习 数学 算法 哲学 语言学 几何学 认识论
作者
Hui Zheng,An Lu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:240: 104906-104906 被引量:10
标识
DOI:10.1016/j.chemolab.2023.104906
摘要

In the soybean market, it is a common phenomenon that low-quality soybeans replace high-quality soybeans. At the same time, due to the influence of the natural growth environment, the quality of soybeans produced in different origins is different. An effective method for detecting the quality of soybeans should be proposed. In this work, a deep learning method is proposed to classify the gas information of soybeans from different origins, providing an effective detection method for the quality supervision of the soybean market. Firstly, a PEN3 electronic nose (e-nose) is used to collect the gas information of soybeans from five different origins. Secondly, a multi-kernels channel attention mechanism (MKCAM) is proposed to focus on the key features of deep gas information. Thirdly, this paper proposes a residual dense block-MKCAM (RDB-MKCAM) to avoid feature degradation, improving feature expression capability. The results show that compared with other gas information classification methods, RDB-MKCAM has achieved 97.80% accuracy, 97.86% precision, 96.82% recall, and 97.33% F1-score, obtaining the best classification performance. In conclusion, RDB-MKCAM combined with a gas sensor array effectively realizes the classification of soybean gas information from different origins and provides an effective detection method for the quality supervision of the soybean market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica发布了新的文献求助30
1秒前
3秒前
PPSlu完成签到,获得积分10
3秒前
在水一方应助易槐采纳,获得10
5秒前
8秒前
marceloclaro完成签到,获得积分10
9秒前
小幸运完成签到,获得积分10
10秒前
PH完成签到,获得积分10
10秒前
萧水白应助qucheng采纳,获得10
10秒前
Lyric完成签到,获得积分10
11秒前
传奇3应助Michael_li采纳,获得10
12秒前
土豪的鸿煊完成签到,获得积分10
12秒前
忧虑的初晴应助Shuo Yang采纳,获得20
13秒前
pluto应助小鹿采纳,获得30
13秒前
荀苑博发布了新的文献求助10
13秒前
精明子默完成签到 ,获得积分10
14秒前
ZZH发布了新的文献求助10
14秒前
lyly完成签到,获得积分10
15秒前
andy_lee发布了新的文献求助10
19秒前
今后应助光亮的天真采纳,获得10
20秒前
顾矜应助浮生采纳,获得10
20秒前
23秒前
王靓仔发布了新的文献求助30
24秒前
江上清风游完成签到,获得积分0
25秒前
幸福鱼完成签到,获得积分10
26秒前
泡泡糖发布了新的文献求助10
26秒前
萧水白应助qucheng采纳,获得10
27秒前
28秒前
maox1aoxin应助聪慧雅霜采纳,获得30
29秒前
xintai完成签到,获得积分10
30秒前
Lyrica完成签到 ,获得积分10
31秒前
ysm完成签到,获得积分10
31秒前
大雨发布了新的文献求助10
32秒前
35秒前
李健的小迷弟应助幸福鱼采纳,获得10
36秒前
andy_lee完成签到,获得积分10
40秒前
42秒前
42秒前
CipherSage应助大雨采纳,获得10
43秒前
43秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345929
求助须知:如何正确求助?哪些是违规求助? 2972753
关于积分的说明 8656093
捐赠科研通 2653094
什么是DOI,文献DOI怎么找? 1452992
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662574