成骨细胞
细胞凋亡
颌骨骨坏死
氧化应激
骨愈合
细胞生物学
骨重建
破骨细胞
化学
癌症研究
药理学
西妥因1
医学
双膦酸盐
内分泌学
生物
生物化学
下调和上调
骨质疏松症
体外
外科
基因
作者
Yaokui Cui,Weidong Zhang,Panpan Yang,Siqi Zhu,Sheng-Lei Luo,Minqi Li
标识
DOI:10.1016/j.freeradbiomed.2023.06.022
摘要
Long-term usage of bisphosphonates, especially zoledronic acid (ZA), induces osteogenesis disorders and medication-related osteonecrosis of the jaw (MRONJ) in patients, thereby contributing to the destruction of bone remodeling and the continuous progression of osteonecrosis. Menaquinone-4 (MK-4), a specific vitamin K2 isoform converted by the mevalonate (MVA) pathway in vivo, exerts the promotion of bone formation, whereas ZA administration suppresses this pathway and results in endogenous MK-4 deficiency. However, no study has evaluated whether exogenous MK-4 supplementation can prevent ZA-induced MRONJ. Here we showed that MK-4 pretreatment partially ameliorated mucosal nonunion and bone sequestration among ZA-treated MRONJ mouse models. Moreover, MK-4 promoted bone regeneration and inhibited osteoblast apoptosis in vivo. Consistently, MK-4 downregulated ZA-induced osteoblast apoptosis in MC3T3-E1 cells and suppressed the levels of cellular metabolic stresses, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and DNA damage, which were accompanied by elevated sirtuin 1 (SIRT1) expression. Notably, EX527, an inhibitor of the SIRT1 signaling pathway, abolished the inhibitory effects of MK-4 on ZA-induced cell metabolic stresses and osteoblast damage. Combined with experimental evidences from MRONJ mouse models and MC3T3-E1 cells, our findings suggested that MK-4 prevents ZA-induced MRONJ by inhibiting osteoblast apoptosis through suppression of cellular metabolic stresses in a SIRT1-dependent manner. The results provide a novel translational direction for the clinical application of MK-4 for preventing MRONJ.
科研通智能强力驱动
Strongly Powered by AbleSci AI