Top-down identification of keystone taxa in the microbiome

梯形物种 鉴定(生物学) 微生物群 分类单元 成对比较 基因组 生态学 生物 进化生物学 计算生物学 计算机科学 生态系统 生物信息学 人工智能 遗传学 基因
作者
Guy Amit,Amir Bashan
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:31
标识
DOI:10.1038/s41467-023-39459-5
摘要

Abstract Keystone taxa in ecological communities are native taxa that play an especially important role in the stability of their ecosystem. However, we still lack an effective framework for identifying these taxa from the available high-throughput sequencing without the notoriously difficult step of reconstructing the detailed network of inter-specific interactions. In addition, while most microbial interaction models assume pair-wise relationships, it is yet unclear whether pair-wise interactions dominate the system, or whether higher-order interactions are relevant. Here we propose a top-down identification framework, which detects keystones by their total influence on the rest of the taxa. Our method does not assume a priori knowledge of pairwise interactions or any specific underlying dynamics and is appropriate to both perturbation experiments and metagenomic cross-sectional surveys. When applied to real high-throughput sequencing of the human gastrointestinal microbiome, we detect a set of candidate keystones and find that they are often part of a keystone module – multiple candidate keystone species with correlated occurrence. The keystone analysis of single-time-point cross-sectional data is also later verified by the evaluation of two-time-points longitudinal sampling. Our framework represents a necessary advancement towards the reliable identification of these key players of complex, real-world microbial communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
现代的寻芹完成签到,获得积分10
1秒前
1秒前
聆风完成签到,获得积分20
2秒前
sunglow11完成签到,获得积分0
2秒前
3秒前
516165165完成签到,获得积分10
3秒前
舒芙蕾发布了新的文献求助10
3秒前
li发布了新的文献求助10
4秒前
郭郭发布了新的文献求助10
5秒前
5秒前
zkokijhfuhwh完成签到,获得积分10
6秒前
6秒前
852应助Yu采纳,获得10
7秒前
7秒前
8秒前
朝圣完成签到,获得积分10
9秒前
王手完成签到,获得积分10
11秒前
11秒前
郭郭完成签到,获得积分10
12秒前
13秒前
14秒前
dandan完成签到,获得积分10
15秒前
16秒前
1270782434发布了新的文献求助10
18秒前
Orange应助HuiJN采纳,获得10
19秒前
19秒前
8R60d8完成签到,获得积分0
23秒前
MRJJJJ完成签到,获得积分10
23秒前
万能图书馆应助沉默寻凝采纳,获得20
24秒前
翟总发布了新的文献求助10
25秒前
fys131415完成签到 ,获得积分10
25秒前
28秒前
30秒前
香香完成签到,获得积分10
31秒前
32秒前
Jasper应助tyx采纳,获得10
32秒前
海东来应助lzb采纳,获得30
32秒前
搜集达人应助fdscat采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420