Remote Sensing Semantic Segmentation via Boundary Supervision-Aided Multiscale Channelwise Cross Attention Network

计算机科学 增采样 背景(考古学) 分割 频道(广播) 边界(拓扑) 特征(语言学) 比例(比率) 像素 可扩展性 人工智能 串联(数学) 数据挖掘 遥感 计算机视觉 模式识别(心理学) 图像(数学) 数据库 电信 古生物学 数学分析 语言学 哲学 物理 数学 量子力学 组合数学 生物 地质学
作者
Jianwei Zheng,A Shao,Yidong Yan,Jie Wu,Meiyu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:14
标识
DOI:10.1109/tgrs.2023.3292112
摘要

High spatial resolution (HSR) remote sensing images inevitably pose the challenge of multi-scale transformation, as small objects such as cars and helicopters may occupy only a few pixel points. This incurs a significant hurdle for global context modeling, particularly in backbone networks with large downsampling coefficients. Simple summation or concatenation techniques, such as skip connections, fail to address semantic gaps and even impose negative impacts on multi-scale feature fusion. Meanwhile, due to the complexity of foreground objects, the boundary details of HSR remote sensing images are easy to lose in sampling operations. To overcome these challenges, we propose a Multi-scale Channel-wise Cross Attention Network (MCCANet) assisted by boundary supervision. Technically, MCCA captures the channel attention with various scales, which allows dynamic and adaptive feature fusion in a contextual scale-aware manner and focuses on both large and small objects distributed throughout the inputs. Besides, a Channel and Context Strainer (CCS) module is proposed and embedded in MCCA, filtering channels and contexts for the mitigation of intra-class differences. In addition, we apply a Boundary Supervision (BS) module to recover boundary contour, avoiding the blurring effect during the construction of contextual information. The refined boundary allows for the effective recognition of surrounding pixels, ensuring a better segmentation performance. Extensive experiments on iSAlD, ISPRS Potsdam, and LoveDA datasets demonstrate that our proposed MCCANet achieves a good balance of high accuracy and efficiency. Code will be available at: https://github.com/ZhengJianwei2/MCCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tan完成签到,获得积分10
刚刚
刚刚
ellen完成签到,获得积分10
刚刚
田様应助梨水儿采纳,获得30
刚刚
1秒前
华仔应助honey采纳,获得10
1秒前
呆萌的如天完成签到,获得积分10
2秒前
2秒前
自由的西装关注了科研通微信公众号
2秒前
2秒前
nancyshine完成签到,获得积分10
3秒前
生动路人应助八卦巧克力采纳,获得10
4秒前
yangjoy完成签到,获得积分10
4秒前
hkh发布了新的文献求助10
4秒前
5秒前
wangjiangtao发布了新的文献求助20
5秒前
优雅妙松发布了新的文献求助10
5秒前
6秒前
6秒前
Kaligash发布了新的文献求助10
6秒前
7秒前
7秒前
Orange应助qqa采纳,获得10
7秒前
柠檬不萌发布了新的文献求助30
8秒前
陈宝妮完成签到,获得积分10
9秒前
9秒前
mukji发布了新的文献求助10
10秒前
黄黄完成签到,获得积分0
11秒前
QQ完成签到,获得积分20
11秒前
11秒前
上官若男应助殷楷霖采纳,获得10
12秒前
ri_290发布了新的文献求助10
13秒前
15秒前
温暖小松鼠完成签到 ,获得积分10
15秒前
李健应助美味的薯片采纳,获得10
15秒前
Gengar发布了新的文献求助10
16秒前
ding发布了新的文献求助10
18秒前
19秒前
mukji完成签到,获得积分10
19秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014