亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote Sensing Semantic Segmentation via Boundary Supervision-Aided Multiscale Channelwise Cross Attention Network

计算机科学 增采样 背景(考古学) 分割 频道(广播) 边界(拓扑) 特征(语言学) 比例(比率) 像素 可扩展性 人工智能 串联(数学) 数据挖掘 遥感 计算机视觉 模式识别(心理学) 图像(数学) 数据库 电信 组合数学 古生物学 哲学 数学分析 地质学 物理 生物 量子力学 语言学 数学
作者
Jianwei Zheng,A Shao,Yidong Yan,Jie Wu,Meiyu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:17
标识
DOI:10.1109/tgrs.2023.3292112
摘要

High spatial resolution (HSR) remote sensing images inevitably pose the challenge of multi-scale transformation, as small objects such as cars and helicopters may occupy only a few pixel points. This incurs a significant hurdle for global context modeling, particularly in backbone networks with large downsampling coefficients. Simple summation or concatenation techniques, such as skip connections, fail to address semantic gaps and even impose negative impacts on multi-scale feature fusion. Meanwhile, due to the complexity of foreground objects, the boundary details of HSR remote sensing images are easy to lose in sampling operations. To overcome these challenges, we propose a Multi-scale Channel-wise Cross Attention Network (MCCANet) assisted by boundary supervision. Technically, MCCA captures the channel attention with various scales, which allows dynamic and adaptive feature fusion in a contextual scale-aware manner and focuses on both large and small objects distributed throughout the inputs. Besides, a Channel and Context Strainer (CCS) module is proposed and embedded in MCCA, filtering channels and contexts for the mitigation of intra-class differences. In addition, we apply a Boundary Supervision (BS) module to recover boundary contour, avoiding the blurring effect during the construction of contextual information. The refined boundary allows for the effective recognition of surrounding pixels, ensuring a better segmentation performance. Extensive experiments on iSAlD, ISPRS Potsdam, and LoveDA datasets demonstrate that our proposed MCCANet achieves a good balance of high accuracy and efficiency. Code will be available at: https://github.com/ZhengJianwei2/MCCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾业辉发布了新的文献求助10
1秒前
9秒前
零知识发布了新的文献求助10
12秒前
粥粥大王完成签到,获得积分10
14秒前
粥粥大王发布了新的文献求助10
18秒前
652183758完成签到 ,获得积分10
23秒前
23秒前
所所应助柚子采纳,获得10
24秒前
酷波er应助啵子采纳,获得10
25秒前
丘比特应助曾业辉采纳,获得10
34秒前
TXZ06完成签到,获得积分10
39秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
Lumi发布了新的文献求助10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
42秒前
英姑应助科研通管家采纳,获得10
42秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
苯苯完成签到,获得积分10
1分钟前
CipherSage应助苯苯采纳,获得10
1分钟前
科研通AI6.1应助洪子睿采纳,获得10
1分钟前
脑洞疼应助要减肥的冰姬采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
啵子发布了新的文献求助10
2分钟前
2分钟前
literature发布了新的文献求助10
2分钟前
MchemG应助零知识采纳,获得10
2分钟前
yolo完成签到 ,获得积分10
2分钟前
iorpi完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
literature完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336