Remote Sensing Semantic Segmentation via Boundary Supervision-Aided Multiscale Channelwise Cross Attention Network

计算机科学 增采样 背景(考古学) 分割 频道(广播) 边界(拓扑) 特征(语言学) 比例(比率) 像素 可扩展性 人工智能 串联(数学) 数据挖掘 遥感 计算机视觉 模式识别(心理学) 图像(数学) 数据库 电信 组合数学 古生物学 哲学 数学分析 地质学 物理 生物 量子力学 语言学 数学
作者
Jianwei Zheng,A Shao,Yidong Yan,Jie Wu,Meiyu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:14
标识
DOI:10.1109/tgrs.2023.3292112
摘要

High spatial resolution (HSR) remote sensing images inevitably pose the challenge of multi-scale transformation, as small objects such as cars and helicopters may occupy only a few pixel points. This incurs a significant hurdle for global context modeling, particularly in backbone networks with large downsampling coefficients. Simple summation or concatenation techniques, such as skip connections, fail to address semantic gaps and even impose negative impacts on multi-scale feature fusion. Meanwhile, due to the complexity of foreground objects, the boundary details of HSR remote sensing images are easy to lose in sampling operations. To overcome these challenges, we propose a Multi-scale Channel-wise Cross Attention Network (MCCANet) assisted by boundary supervision. Technically, MCCA captures the channel attention with various scales, which allows dynamic and adaptive feature fusion in a contextual scale-aware manner and focuses on both large and small objects distributed throughout the inputs. Besides, a Channel and Context Strainer (CCS) module is proposed and embedded in MCCA, filtering channels and contexts for the mitigation of intra-class differences. In addition, we apply a Boundary Supervision (BS) module to recover boundary contour, avoiding the blurring effect during the construction of contextual information. The refined boundary allows for the effective recognition of surrounding pixels, ensuring a better segmentation performance. Extensive experiments on iSAlD, ISPRS Potsdam, and LoveDA datasets demonstrate that our proposed MCCANet achieves a good balance of high accuracy and efficiency. Code will be available at: https://github.com/ZhengJianwei2/MCCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜离殇完成签到 ,获得积分10
刚刚
WENc发布了新的文献求助10
1秒前
有魅力荟发布了新的文献求助10
2秒前
2秒前
2秒前
zzyyzz完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
faker完成签到,获得积分20
5秒前
打打应助善良青筠采纳,获得10
5秒前
yujia发布了新的文献求助10
6秒前
6秒前
7秒前
打打应助风中尔云采纳,获得10
7秒前
丘比特应助WENc采纳,获得10
7秒前
klb13应助吭哧吭哧采纳,获得10
7秒前
有只小狗完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
某某某发布了新的文献求助10
9秒前
9秒前
贪玩书包发布了新的文献求助10
9秒前
甜蜜发带完成签到 ,获得积分10
10秒前
莫言发布了新的文献求助10
10秒前
10秒前
高贵路灯发布了新的文献求助10
11秒前
wo发布了新的文献求助10
11秒前
11秒前
重要半兰发布了新的文献求助10
12秒前
12秒前
TYKI发布了新的文献求助10
12秒前
NovermberRain发布了新的文献求助10
13秒前
有一朵小玫瑰完成签到 ,获得积分10
14秒前
chinning发布了新的文献求助10
14秒前
14秒前
友好白凡发布了新的文献求助10
14秒前
蓝蓝娜娜发布了新的文献求助10
15秒前
解冰珍完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557