Remote Sensing Semantic Segmentation via Boundary Supervision-Aided Multiscale Channelwise Cross Attention Network

计算机科学 增采样 背景(考古学) 分割 频道(广播) 边界(拓扑) 特征(语言学) 比例(比率) 像素 可扩展性 人工智能 串联(数学) 数据挖掘 遥感 计算机视觉 模式识别(心理学) 图像(数学) 数据库 电信 组合数学 古生物学 哲学 数学分析 地质学 物理 生物 量子力学 语言学 数学
作者
Jianwei Zheng,A Shao,Yidong Yan,Jie Wu,Meiyu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:17
标识
DOI:10.1109/tgrs.2023.3292112
摘要

High spatial resolution (HSR) remote sensing images inevitably pose the challenge of multi-scale transformation, as small objects such as cars and helicopters may occupy only a few pixel points. This incurs a significant hurdle for global context modeling, particularly in backbone networks with large downsampling coefficients. Simple summation or concatenation techniques, such as skip connections, fail to address semantic gaps and even impose negative impacts on multi-scale feature fusion. Meanwhile, due to the complexity of foreground objects, the boundary details of HSR remote sensing images are easy to lose in sampling operations. To overcome these challenges, we propose a Multi-scale Channel-wise Cross Attention Network (MCCANet) assisted by boundary supervision. Technically, MCCA captures the channel attention with various scales, which allows dynamic and adaptive feature fusion in a contextual scale-aware manner and focuses on both large and small objects distributed throughout the inputs. Besides, a Channel and Context Strainer (CCS) module is proposed and embedded in MCCA, filtering channels and contexts for the mitigation of intra-class differences. In addition, we apply a Boundary Supervision (BS) module to recover boundary contour, avoiding the blurring effect during the construction of contextual information. The refined boundary allows for the effective recognition of surrounding pixels, ensuring a better segmentation performance. Extensive experiments on iSAlD, ISPRS Potsdam, and LoveDA datasets demonstrate that our proposed MCCANet achieves a good balance of high accuracy and efficiency. Code will be available at: https://github.com/ZhengJianwei2/MCCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助无wu采纳,获得10
刚刚
萧萧完成签到,获得积分0
刚刚
1秒前
1秒前
2秒前
深情安青应助机智跳跳糖采纳,获得10
2秒前
LCC发布了新的文献求助10
2秒前
hhllhh发布了新的文献求助10
3秒前
3秒前
3秒前
Zyw关注了科研通微信公众号
4秒前
5秒前
微光熠发布了新的文献求助10
5秒前
称心的水蓉完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
nature榜上发布了新的文献求助10
5秒前
Owen应助人类不宜搞科研采纳,获得10
5秒前
ww完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
于瑜与余发布了新的文献求助10
8秒前
8秒前
元谷雪发布了新的文献求助10
8秒前
9秒前
10秒前
自然听兰发布了新的文献求助10
10秒前
Jerryis发布了新的文献求助10
11秒前
12秒前
共享精神应助李耀京采纳,获得30
12秒前
12秒前
黄诗淇完成签到,获得积分10
13秒前
13秒前
123456发布了新的文献求助10
13秒前
13秒前
漱泉枕石发布了新的文献求助10
14秒前
14秒前
Lucas应助俊逸的三毒采纳,获得10
14秒前
有风的地方完成签到 ,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277