移动荷载
拉普拉斯变换
多物理
声压
有限元法
振动
粘弹性
频域
时域
机械
声学
结构工程
数学分析
材料科学
数学
工程类
物理
计算机科学
计算机视觉
复合材料
作者
Pouyan Roodgar Saffari,Chanachai Thongchom,Thira Jearsiripongkul,Peyman Roodgar Saffari,Suraparb Keawsawasvong,Suphanut Kongwat
标识
DOI:10.1016/j.ijft.2023.100409
摘要
This study presents an analytical framework based on the third-order shear deformation theory (TSDT) to conduct a comprehensive thermo-vibro-acoustic evaluation of a multi-layered asphalt system subjected to a harmonically rectangular moving load. The research aims to investigate the dynamic response and sound radiation characteristics of the pavement under various operating conditions. The materials and methods employed in this study are as follows: The temperature variations along the thickness axis of the layers are considered, and Hamilton's principle is adopted to derive the governing equations in the time-based domain. The equations are then solved in the Laplace domain using the Fourier series and the Laplace transform. The acoustic pressure generated by the moving load is investigated by applying Durbin's numerical Laplace transform inversion technique and analyzing the Rayleigh integral. The accuracy and flexibility of the proposed approach are demonstrated through comparisons with previous studies and finite element (FE) simulations using COMSOL Multiphysics®. Finally, a comprehensive analysis is conducted to examine the impact of various factors, including the frequency and velocity of the moving excitation load, the viscoelastic medium, and variations in temperature, on both the dynamic response and sound radiation of the pavement. Some of the major findings of this research are as follows: An increase in load velocity leads to a higher frequency of pressure waves and closer spacing between them, resulting in elevated sound pressure amplitude. Higher pavement temperatures cause increased softness and rutting depth under moving loads. This research offers a novel and practical contribution to the field of pavement systems by presenting an analytical framework for a comprehensive thermo-vibro-acoustic evaluation and providing valuable insights into the dynamic response and sound radiation characteristics of multi-layered asphalt systems under various operating conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI