RepViT: Revisiting Mobile CNN From ViT Perspective

计算机科学 人工智能 透视图(图形)
作者
Ao Wang,Hui Chen,Zijia Lin,Hengjun Pu,Guiguang Ding
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2307.09283
摘要

Recently, lightweight Vision Transformers (ViTs) demonstrate superior performance and lower latency, compared with lightweight Convolutional Neural Networks (CNNs), on resource-constrained mobile devices. Researchers have discovered many structural connections between lightweight ViTs and lightweight CNNs. However, the notable architectural disparities in the block structure, macro, and micro designs between them have not been adequately examined. In this study, we revisit the efficient design of lightweight CNNs from ViT perspective and emphasize their promising prospect for mobile devices. Specifically, we incrementally enhance the mobile-friendliness of a standard lightweight CNN, \ie, MobileNetV3, by integrating the efficient architectural designs of lightweight ViTs. This ends up with a new family of pure lightweight CNNs, namely RepViT. Extensive experiments show that RepViT outperforms existing state-of-the-art lightweight ViTs and exhibits favorable latency in various vision tasks. Notably, on ImageNet, RepViT achieves over 80\% top-1 accuracy with 1.0 ms latency on an iPhone 12, which is the first time for a lightweight model, to the best of our knowledge. Besides, when RepViT meets SAM, our RepViT-SAM can achieve nearly 10$\times$ faster inference than the advanced MobileSAM. Codes and models are available at \url{https://github.com/THU-MIG/RepViT}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summy发布了新的文献求助10
刚刚
刚刚
Lee发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
Pengcheng发布了新的文献求助10
3秒前
思思发布了新的文献求助10
3秒前
荀煜祺完成签到,获得积分10
4秒前
zxr发布了新的文献求助10
4秒前
5秒前
5秒前
坚强枫发布了新的文献求助10
5秒前
骑骑完成签到,获得积分10
5秒前
慕青应助会撒娇的金鑫采纳,获得10
5秒前
mianbao发布了新的文献求助10
6秒前
nenoaowu发布了新的文献求助10
7秒前
在水一方应助niko采纳,获得10
7秒前
jacs111发布了新的文献求助10
7秒前
JGH发布了新的文献求助10
7秒前
慕青应助Silentjj84采纳,获得10
7秒前
8秒前
8秒前
小北完成签到,获得积分10
8秒前
瓜瓜发布了新的文献求助10
9秒前
希望天下0贩的0应助nenoaowu采纳,获得10
10秒前
芋泥脑袋发布了新的文献求助10
10秒前
zzululu2024完成签到,获得积分10
10秒前
QL发布了新的文献求助10
11秒前
yajuan33完成签到,获得积分10
11秒前
11秒前
Angenstern完成签到 ,获得积分10
12秒前
在水一方应助1122采纳,获得10
13秒前
咕噜咕噜完成签到,获得积分20
13秒前
末了未了应助ZR14124采纳,获得20
13秒前
14秒前
守夜人完成签到,获得积分10
14秒前
14秒前
15秒前
坚强枫完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794