Relationship between Lidar-Derived Canopy Densities and the Scattering Phase Center of High-Resolution TanDEM-X Data

天蓬 每年落叶的 激光雷达 遥感 树冠 环境科学 森林结构 叶面积指数 合成孔径雷达 植被(病理学) 雷达 大气科学 地理 地质学 生态学 计算机科学 医学 电信 考古 病理 生物
作者
Jonas Ziemer,Clémence Dubois,Christian Thiel,José–Luis Bueso–Bello,Paola Rizzoli,Christiane Schmullius
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (14): 3589-3589 被引量:1
标识
DOI:10.3390/rs15143589
摘要

The estimation of forestry parameters is essential to understanding the three-dimensional structure of forests. In this respect, the potential of X-band synthetic aperture radar (SAR) has been recognized for years. Many studies have been conducted on deriving tree heights with SAR data, but few have paid attention to the effects of the canopy structure. Canopy density plays an important role since it provides information about the vertical distribution of dominant scatterers in the forest. In this study, the position of the scattering phase center (SPC) of interferometric X-band SAR data is investigated with regard to the densest vegetation layer in a deciduous and coniferous forest in Germany by applying a canopy density index from high-resolution airborne laser scanning data. Two different methods defining the densest layer are introduced and compared with the position of the TanDEM-X SPC. The results indicate that the position of the SPC often coincides with the densest layer, with mean differences ranging from −1.6 m to +0.7 m in the deciduous forest and +1.9 m in the coniferous forest. Regarding relative tree heights, the SAR signal on average penetrates up to 15% (3.4 m) of the average tree height in the coniferous forest. In the deciduous forest, the difference increases to 18% (6.2 m) during summer and 24% (8.2 m) during winter. These findings highlight the importance of considering not only tree height but also canopy density when delineating SAR-based forest heights. The vertical structure of the canopy influences the position of the SPC, and incorporating canopy density can improve the accuracy of SAR-derived forest height estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的薯片应助lyt采纳,获得20
1秒前
sweetbearm应助寒涛先生采纳,获得10
2秒前
wanci应助YY采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
HC完成签到 ,获得积分10
6秒前
姚姚的赵赵完成签到,获得积分10
6秒前
JamesPei应助大豪子采纳,获得30
7秒前
jy发布了新的文献求助10
7秒前
7秒前
陆靖易发布了新的文献求助10
7秒前
LQW完成签到,获得积分20
8秒前
9秒前
plant完成签到,获得积分10
9秒前
lyt完成签到,获得积分10
9秒前
10秒前
11秒前
敏感网络完成签到,获得积分20
12秒前
kh453发布了新的文献求助10
12秒前
12秒前
子爵木完成签到 ,获得积分10
12秒前
HC发布了新的文献求助30
13秒前
无限鞅发布了新的文献求助10
13秒前
SherlockLiu完成签到,获得积分20
13秒前
14秒前
吴岳发布了新的文献求助10
15秒前
陆靖易完成签到,获得积分10
15秒前
17秒前
Bella完成签到 ,获得积分10
17秒前
yhl发布了新的文献求助10
18秒前
19秒前
震动的乐天完成签到,获得积分10
20秒前
21秒前
22秒前
Hello应助xuanxuan采纳,获得10
23秒前
村长热爱美丽完成签到 ,获得积分10
23秒前
一衣完成签到,获得积分20
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808