化学
药理学
类阿片
兴奋剂
部分激动剂
多巴胺能
多巴胺
阿片受体
多巴胺受体D2
受体
生物化学
内科学
医学
作者
Alessandro Bonifazi,Elizabeth Saab,Julie Sanchez,Antonina L. Nazarova,Saheem A. Zaidi,Khorshada Jahan,Vsevolod Katritch,Meritxell Canals,J. Robert Lane,Amy Hauck Newman
标识
DOI:10.1021/acs.jmedchem.3c00417
摘要
A new generation of dual-target μ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood–brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.
科研通智能强力驱动
Strongly Powered by AbleSci AI