Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics

卡车 无人机 稳健性(进化) 计算机科学 车辆路径问题 运筹学 布线(电子设计自动化) 稳健优化 资源(消歧) 数学优化 运输工程 工程类 计算机网络 汽车工程 数学 生物化学 遗传学 生物 基因 化学
作者
Yunqiang Yin,Yongjian Yang,Yugang Yu,Dujuan Wang,T.C.E. Cheng
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:174: 102781-102781 被引量:38
标识
DOI:10.1016/j.trb.2023.102781
摘要

Resource transport in the aftermath of disasters is critical, yet in the absence of sufficient historical data or accurate forecasting approaches, the development of resource transport strategies often faces the challenge of dealing with uncertainty, especially uncertainties in demand and travel time. In this paper we investigate the vehicle routing problem with drones under uncertain demands and truck travel times. Specifically, there is a set of trucks and drones (each truck is associated with a drone) collaborating to transport relief resources to the affected areas, where a drone can be launched from its associated truck at a node, independently transporting relief resources to one or more of the affected areas, and returning to the truck at another node along the truck route. For this problem, we present a tailored robust optimization model based on the well-known budgeted uncertainty set, and develop an enhanced branch-and-price-and-cut algorithm incorporating a bounded bidirectional labelling algorithm to solve the pricing problem, which can be modelled as a robust resource-constrained vehicle and drone synthetic shortest path problem. To enhance the performance of the algorithm, we employ subset-row inequalities to tighten the lower bound and incorporate some enhancement strategies to quickly solve the pricing problem. We perform extensive numerical studies to assess the performance of the developed algorithm, discuss the benefits of considering uncertainty and robustness, and analyse the impacts of key model parameters on the optimal solution. We also evaluate the benefits of the truck–drone collaborative transport mode over the truck-only transport mode through a real case study of the 2008 earthquake in Wenchuan, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助霸气以寒采纳,获得10
刚刚
充电宝应助猪兔采纳,获得20
1秒前
锂安完成签到,获得积分10
1秒前
1秒前
FUTURE发布了新的文献求助10
2秒前
莉亚发布了新的文献求助30
2秒前
3秒前
希望天下0贩的0应助wzcxysbb采纳,获得10
4秒前
小蘑菇应助西猫采纳,获得10
5秒前
喵了个咪完成签到 ,获得积分10
5秒前
云飞扬发布了新的文献求助20
5秒前
郭宇乐发布了新的文献求助30
6秒前
missinglotta发布了新的文献求助10
6秒前
zho发布了新的文献求助30
7秒前
7秒前
ZZ完成签到,获得积分10
8秒前
科研通AI5应助qianchen采纳,获得10
8秒前
9秒前
bean完成签到,获得积分10
9秒前
洋洋发布了新的文献求助10
10秒前
科研通AI5应助zzk采纳,获得30
13秒前
Lucas应助yujia采纳,获得10
14秒前
留胡子的雨柏完成签到,获得积分10
15秒前
星辉斑斓发布了新的文献求助10
15秒前
善学以致用应助小鱼儿采纳,获得10
17秒前
17秒前
Yxiang完成签到 ,获得积分10
17秒前
FUTURE完成签到,获得积分10
17秒前
大模型应助wj采纳,获得10
18秒前
NexusExplorer应助洋洋采纳,获得10
20秒前
filter完成签到,获得积分10
21秒前
21秒前
zzk发布了新的文献求助30
21秒前
调皮的老王头完成签到,获得积分10
22秒前
七熵完成签到 ,获得积分10
23秒前
24秒前
灰太狼养的小灰灰完成签到,获得积分10
25秒前
学术大白完成签到 ,获得积分10
25秒前
27秒前
蜡笔小鑫发布了新的文献求助30
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730516
求助须知:如何正确求助?哪些是违规求助? 3275135
关于积分的说明 9991313
捐赠科研通 2990742
什么是DOI,文献DOI怎么找? 1641233
邀请新用户注册赠送积分活动 779636
科研通“疑难数据库(出版商)”最低求助积分说明 748331