Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics

卡车 无人机 稳健性(进化) 计算机科学 车辆路径问题 运筹学 布线(电子设计自动化) 稳健优化 资源(消歧) 数学优化 运输工程 工程类 计算机网络 汽车工程 数学 生物化学 遗传学 生物 基因 化学
作者
Yunqiang Yin,Yongjian Yang,Yugang Yu,Dujuan Wang,T.C.E. Cheng
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:174: 102781-102781 被引量:42
标识
DOI:10.1016/j.trb.2023.102781
摘要

Resource transport in the aftermath of disasters is critical, yet in the absence of sufficient historical data or accurate forecasting approaches, the development of resource transport strategies often faces the challenge of dealing with uncertainty, especially uncertainties in demand and travel time. In this paper we investigate the vehicle routing problem with drones under uncertain demands and truck travel times. Specifically, there is a set of trucks and drones (each truck is associated with a drone) collaborating to transport relief resources to the affected areas, where a drone can be launched from its associated truck at a node, independently transporting relief resources to one or more of the affected areas, and returning to the truck at another node along the truck route. For this problem, we present a tailored robust optimization model based on the well-known budgeted uncertainty set, and develop an enhanced branch-and-price-and-cut algorithm incorporating a bounded bidirectional labelling algorithm to solve the pricing problem, which can be modelled as a robust resource-constrained vehicle and drone synthetic shortest path problem. To enhance the performance of the algorithm, we employ subset-row inequalities to tighten the lower bound and incorporate some enhancement strategies to quickly solve the pricing problem. We perform extensive numerical studies to assess the performance of the developed algorithm, discuss the benefits of considering uncertainty and robustness, and analyse the impacts of key model parameters on the optimal solution. We also evaluate the benefits of the truck–drone collaborative transport mode over the truck-only transport mode through a real case study of the 2008 earthquake in Wenchuan, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助科研通管家采纳,获得10
刚刚
boxi完成签到,获得积分10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
天天快乐应助无限绿旋采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
qiaokizhang完成签到,获得积分10
刚刚
刚刚
刚刚
iNk应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
ED应助多喝开开采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
刚刚
Happyness应助科研通管家采纳,获得10
刚刚
Gauss应助科研通管家采纳,获得30
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得30
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
周辰完成签到,获得积分10
1秒前
Ava应助震震采纳,获得10
1秒前
2秒前
冰糕发布了新的文献求助10
2秒前
lmd完成签到,获得积分10
2秒前
3秒前
贾舒涵发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
又声完成签到,获得积分10
3秒前
careyzhou发布了新的文献求助10
3秒前
3秒前
笑点低白秋完成签到,获得积分10
4秒前
yue完成签到,获得积分10
4秒前
梵高的向日葵完成签到,获得积分10
4秒前
由北完成签到,获得积分20
4秒前
5秒前
111完成签到,获得积分10
5秒前
夏尔发布了新的文献求助10
5秒前
自由的云朵完成签到 ,获得积分10
5秒前
JoshuaChen发布了新的文献求助10
5秒前
力量完成签到,获得积分10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582