蛛网膜下腔出血
动脉瘤
无症状的
医学
放射科
重症监护医学
外科
作者
S. Nafees Ahmed,P. Prakasam
标识
DOI:10.1016/j.pbiomolbio.2023.07.001
摘要
The risk of discovering an intracranial aneurysm during the initial screening and follow-up screening are reported as around 11%, and 7% respectively (Zuurbie et al., 2023) to these mass effects, unruptured aneurysms frequently generate symptoms, however, the real hazard occurs when an aneurysm ruptures and results in a cerebral hemorrhage known as a subarachnoid hemorrhage. The objective is to study the multiple kinds of hemorrhage and aneurysm detection problems and develop machine and deep learning models to recognise them. Due to its early stage, subarachnoid hemorrhage, the most typical symptom after aneurysm rupture, is an important medical condition. It frequently results in severe neurological emergencies or even death. Although most aneurysms are asymptomatic and won't burst, because of their unpredictable growth, even small aneurysms are susceptible. A timely diagnosis is essential to prevent early mortality because a large percentage of hemorrhage cases present can be fatal. Physiological/imaging markers and the degree of the subarachnoid hemorrhage can be used as indicators for potential early treatments in hemorrhage. The hemodynamic pathomechanisms and microcellular environment should remain a priority for academics and medical professionals. There is still disagreement about how and when to care for aneurysms that have not ruptured despite studies reporting on the risk of rupture and outcomes. We are optimistic that with the progress in our understanding of the pathophysiology of hemorrhages and aneurysms and the advancement of artificial intelligence has made it feasible to conduct analyses with a high degree of precision, effectiveness and reliability.
科研通智能强力驱动
Strongly Powered by AbleSci AI