A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques

蛛网膜下腔出血 动脉瘤 无症状的 医学 放射科 重症监护医学 外科
作者
S. Nafees Ahmed,P. Prakasam
出处
期刊:Progress in Biophysics & Molecular Biology [Elsevier]
卷期号:183: 1-16 被引量:8
标识
DOI:10.1016/j.pbiomolbio.2023.07.001
摘要

The risk of discovering an intracranial aneurysm during the initial screening and follow-up screening are reported as around 11%, and 7% respectively (Zuurbie et al., 2023) to these mass effects, unruptured aneurysms frequently generate symptoms, however, the real hazard occurs when an aneurysm ruptures and results in a cerebral hemorrhage known as a subarachnoid hemorrhage. The objective is to study the multiple kinds of hemorrhage and aneurysm detection problems and develop machine and deep learning models to recognise them. Due to its early stage, subarachnoid hemorrhage, the most typical symptom after aneurysm rupture, is an important medical condition. It frequently results in severe neurological emergencies or even death. Although most aneurysms are asymptomatic and won't burst, because of their unpredictable growth, even small aneurysms are susceptible. A timely diagnosis is essential to prevent early mortality because a large percentage of hemorrhage cases present can be fatal. Physiological/imaging markers and the degree of the subarachnoid hemorrhage can be used as indicators for potential early treatments in hemorrhage. The hemodynamic pathomechanisms and microcellular environment should remain a priority for academics and medical professionals. There is still disagreement about how and when to care for aneurysms that have not ruptured despite studies reporting on the risk of rupture and outcomes. We are optimistic that with the progress in our understanding of the pathophysiology of hemorrhages and aneurysms and the advancement of artificial intelligence has made it feasible to conduct analyses with a high degree of precision, effectiveness and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助四眼骷髅采纳,获得10
1秒前
chn丶楠发布了新的文献求助10
2秒前
2秒前
Otorhino发布了新的文献求助10
2秒前
2秒前
Mandy发布了新的文献求助10
3秒前
能干可兰完成签到,获得积分10
4秒前
xixi发布了新的文献求助10
4秒前
4秒前
4秒前
京润过发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
jing111发布了新的文献求助10
5秒前
chemist229完成签到 ,获得积分10
6秒前
高贵的夜南完成签到,获得积分10
6秒前
能干可兰发布了新的文献求助10
6秒前
7秒前
Orange应助念心采纳,获得10
7秒前
清净163完成签到,获得积分10
7秒前
Jasper应助chn丶楠采纳,获得10
7秒前
疯度完成签到,获得积分10
8秒前
8秒前
杨仔1227发布了新的文献求助10
9秒前
10秒前
金2022发布了新的文献求助20
10秒前
11秒前
共享精神应助东东呀采纳,获得10
11秒前
???发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
FashionBoy应助热心马里奥采纳,获得10
13秒前
诗雨完成签到,获得积分10
14秒前
15秒前
Singularity应助科研通管家采纳,获得20
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
22222发布了新的文献求助30
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419