Callee: Recovering Call Graphs for Binaries with Transfer and Contrastive Learning

计算机科学 杠杆(统计) 学习迁移 模糊测试 人工智能 假阳性悖论 调用图 二进制数 传输(计算) 深层神经网络 机器学习 理论计算机科学 深度学习 程序设计语言 软件 操作系统 算术 数学
作者
Wenyu Zhu,Zhiyao Feng,Zihan Zhang,Jianjun Chen,Zhijian Ou,Min Yang,Chao Zhang
标识
DOI:10.1109/sp46215.2023.10179482
摘要

Recovering binary programs’ call graphs is crucial for inter-procedural analysis tasks and applications based on them. One of the core challenges is recognizing targets of indirect calls (i.e., indirect callees). Existing solutions all have high false positives and negatives, making call graphs inaccurate. In this paper, we propose a new solution Callee combining transfer learning and contrastive learning. The key insight is that, deep neural networks (DNNs) can automatically identify patterns concerning indirect calls. Inspired by the advances in question-answering applications, we utilize contrastive learning to answer the callsite-callee question. However, one of the toughest challenges is that DNNs need large datasets to achieve high performance, while collecting large-scale indirect-call ground truths can be computational-expensive. Therefore, we leverage transfer learning to pre-train DNNs with easy-to-collect direct calls and further fine-tune DNNs for indirect-calls. We evaluate Callee on several groups of targets, and results show that our solution could match callsites to callees with an F1-Measure of 94.6%, much better than state-of-the-art solutions. Further, we apply Callee to two applications – binary code similarity detection and hybrid fuzzing, and found it could greatly improve their performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助sss采纳,获得10
1秒前
DenM7发布了新的文献求助10
1秒前
3秒前
爆米花应助taotao216采纳,获得10
3秒前
pigff发布了新的文献求助10
4秒前
SciGPT应助落花亦是落雨采纳,获得10
4秒前
4秒前
YZC完成签到,获得积分10
5秒前
Orange应助Dogtor采纳,获得10
5秒前
5秒前
斯文败类应助无奈又晴采纳,获得10
5秒前
可爱的函函应助xin采纳,获得10
6秒前
YIYI完成签到,获得积分20
7秒前
7秒前
bbbao发布了新的文献求助10
7秒前
烟花应助苹果不平采纳,获得10
8秒前
落后成仁完成签到,获得积分20
8秒前
Youlu发布了新的文献求助10
9秒前
9秒前
风清扬发布了新的文献求助10
9秒前
DenM7完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
tt发布了新的文献求助10
12秒前
赘婿应助Youlu采纳,获得10
12秒前
LMY发布了新的文献求助10
14秒前
优美紫槐发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
17秒前
17秒前
周航发布了新的文献求助10
17秒前
17秒前
英姑应助芒果绵绵冰采纳,获得10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172