亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Callee: Recovering Call Graphs for Binaries with Transfer and Contrastive Learning

计算机科学 杠杆(统计) 学习迁移 模糊测试 人工智能 假阳性悖论 调用图 二进制数 传输(计算) 深层神经网络 机器学习 理论计算机科学 深度学习 程序设计语言 软件 操作系统 算术 数学
作者
Wenyu Zhu,Zhiyao Feng,Zihan Zhang,Jianjun Chen,Zhijian Ou,Min Yang,Chao Zhang
标识
DOI:10.1109/sp46215.2023.10179482
摘要

Recovering binary programs’ call graphs is crucial for inter-procedural analysis tasks and applications based on them. One of the core challenges is recognizing targets of indirect calls (i.e., indirect callees). Existing solutions all have high false positives and negatives, making call graphs inaccurate. In this paper, we propose a new solution Callee combining transfer learning and contrastive learning. The key insight is that, deep neural networks (DNNs) can automatically identify patterns concerning indirect calls. Inspired by the advances in question-answering applications, we utilize contrastive learning to answer the callsite-callee question. However, one of the toughest challenges is that DNNs need large datasets to achieve high performance, while collecting large-scale indirect-call ground truths can be computational-expensive. Therefore, we leverage transfer learning to pre-train DNNs with easy-to-collect direct calls and further fine-tune DNNs for indirect-calls. We evaluate Callee on several groups of targets, and results show that our solution could match callsites to callees with an F1-Measure of 94.6%, much better than state-of-the-art solutions. Further, we apply Callee to two applications – binary code similarity detection and hybrid fuzzing, and found it could greatly improve their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
47秒前
58秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
929关闭了929文献求助
2分钟前
2分钟前
卑微学术人完成签到 ,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
李东东完成签到 ,获得积分10
4分钟前
喜悦幻灵完成签到,获得积分10
5分钟前
欧皇发布了新的文献求助10
5分钟前
朱文韬发布了新的文献求助10
6分钟前
朱文韬发布了新的文献求助10
6分钟前
nano完成签到 ,获得积分10
6分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬完成签到,获得积分10
7分钟前
929完成签到,获得积分10
7分钟前
929发布了新的文献求助10
8分钟前
胖哥发布了新的文献求助10
8分钟前
Aaaaa发布了新的文献求助10
8分钟前
和气生财君完成签到 ,获得积分10
9分钟前
ZXneuro完成签到,获得积分10
9分钟前
香蕉觅云应助科研通管家采纳,获得10
9分钟前
9分钟前
称心芷巧发布了新的文献求助50
9分钟前
9分钟前
10分钟前
心随以动完成签到 ,获得积分10
10分钟前
修辛完成签到 ,获得积分10
10分钟前
科目三应助符聪采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214