亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Output Feedback Position Control of Hydraulic Support with Neural Network Compensator

控制理论(社会学) 微分器 液压缸 稳健性(进化) 水力机械 工程类 控制工程 人工神经网络 控制器(灌溉) 液压马达 PID控制器 控制系统 计算机科学 人工智能 控制(管理) 带宽(计算) 温度控制 机械工程 电信 农学 生物化学 化学 电气工程 生物 基因
作者
Haigang Ding,Yunfei Wang,He Zhao
出处
期刊:Actuators [MDPI AG]
卷期号:12 (7): 263-263 被引量:1
标识
DOI:10.3390/act12070263
摘要

Hydraulic support is important equipment in the fully mechanized mining face, and the control performance of the hydraulic support multi-cylinder system directly affects the smooth progress of coal mining process, which is the basis for the continuous advancement of the coal face. However, the friction force of the hydraulic support in the process of pulling the frame is complex due to the underground environmental load. Moreover, the parameters of the moving cylinder are uncertain, and the state of the system cannot be fully measured, which increases the difficulty of control. A proportional-integral-derivative controller is usually used in electro-hydraulic closed-loop control systems because of its computational complexity, but its robustness is poorly adapted to variable load conditions in the coal mine. Therefore, a robust output feedback position controller is proposed in this paper to improve control accuracy and system robustness with only position signal. The multi-cylinder system of hydraulic support is modeled as a standard type, and then a high-order differentiator is proposed to estimate the immeasurable system states using the output position signal. A neural network compensator is applied to estimate and compensate for the external disturbance of the moving cylinder. Furthermore, the parameters of the ZY3200/08/18D hydraulic support are adopted to analyze the effectiveness of the designed controller in simulations. Finally, a real-time control system of hydraulic support is built, and the experimental results show that the novel robust output feedback controller has improved by 47.2% and 30.6% in tracking accuracy compared to PI controller.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助dawn采纳,获得10
4秒前
14秒前
dawn完成签到,获得积分20
17秒前
dawn发布了新的文献求助10
20秒前
42秒前
汉堡包应助Fluoxtine采纳,获得10
49秒前
xixi发布了新的文献求助10
49秒前
丘比特应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
汉堡包应助科研通管家采纳,获得10
50秒前
慕青应助科研通管家采纳,获得10
50秒前
kuoping完成签到,获得积分0
53秒前
58秒前
机灵自中完成签到,获得积分10
1分钟前
Stellarshi517发布了新的文献求助20
1分钟前
1分钟前
科研通AI6.1应助xixi采纳,获得10
1分钟前
lyw发布了新的文献求助10
1分钟前
田様应助Stellarshi517采纳,获得20
1分钟前
1分钟前
kuiuLinvk发布了新的文献求助10
1分钟前
2分钟前
kuiuLinvk完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.1应助小博采纳,获得10
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助凛玖niro采纳,获得10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577