Robust Output Feedback Position Control of Hydraulic Support with Neural Network Compensator

控制理论(社会学) 微分器 液压缸 稳健性(进化) 水力机械 工程类 控制工程 人工神经网络 控制器(灌溉) 液压马达 PID控制器 控制系统 计算机科学 人工智能 控制(管理) 带宽(计算) 温度控制 机械工程 电信 农学 生物化学 化学 电气工程 生物 基因
作者
Haigang Ding,Yunfei Wang,He Zhao
出处
期刊:Actuators [MDPI AG]
卷期号:12 (7): 263-263 被引量:1
标识
DOI:10.3390/act12070263
摘要

Hydraulic support is important equipment in the fully mechanized mining face, and the control performance of the hydraulic support multi-cylinder system directly affects the smooth progress of coal mining process, which is the basis for the continuous advancement of the coal face. However, the friction force of the hydraulic support in the process of pulling the frame is complex due to the underground environmental load. Moreover, the parameters of the moving cylinder are uncertain, and the state of the system cannot be fully measured, which increases the difficulty of control. A proportional-integral-derivative controller is usually used in electro-hydraulic closed-loop control systems because of its computational complexity, but its robustness is poorly adapted to variable load conditions in the coal mine. Therefore, a robust output feedback position controller is proposed in this paper to improve control accuracy and system robustness with only position signal. The multi-cylinder system of hydraulic support is modeled as a standard type, and then a high-order differentiator is proposed to estimate the immeasurable system states using the output position signal. A neural network compensator is applied to estimate and compensate for the external disturbance of the moving cylinder. Furthermore, the parameters of the ZY3200/08/18D hydraulic support are adopted to analyze the effectiveness of the designed controller in simulations. Finally, a real-time control system of hydraulic support is built, and the experimental results show that the novel robust output feedback controller has improved by 47.2% and 30.6% in tracking accuracy compared to PI controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
纾缓完成签到,获得积分10
1秒前
正电荷完成签到 ,获得积分10
2秒前
科研小豆完成签到 ,获得积分20
3秒前
WH完成签到,获得积分20
3秒前
制冷剂完成签到 ,获得积分10
4秒前
5秒前
半透明发布了新的文献求助10
6秒前
sober发布了新的文献求助10
6秒前
华仔应助褶皱采纳,获得10
7秒前
余姓懒完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
852应助Jiang-Yujia采纳,获得10
9秒前
Kinsuo发布了新的文献求助30
10秒前
11秒前
12秒前
传奇3应助jane采纳,获得10
14秒前
14秒前
Hello应助行者采纳,获得10
15秒前
yixia222发布了新的文献求助10
15秒前
16秒前
Ava应助Maestro_S采纳,获得30
17秒前
结实的蘑菇完成签到 ,获得积分10
18秒前
青山老岸完成签到,获得积分10
19秒前
丘比特应助mslln采纳,获得10
21秒前
香蕉觅云应助跳跃的代芙采纳,获得10
21秒前
Jiang-Yujia发布了新的文献求助10
21秒前
21秒前
褶皱发布了新的文献求助10
21秒前
22秒前
Della完成签到,获得积分10
23秒前
23秒前
半透明完成签到,获得积分20
24秒前
往返完成签到,获得积分10
24秒前
啦啦啦发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760