EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
Ava应助eyrefa采纳,获得30
2秒前
2秒前
2秒前
coco完成签到,获得积分10
2秒前
3秒前
糖果铺子发布了新的文献求助10
5秒前
YueLongZ发布了新的文献求助10
5秒前
科研通AI6应助朴素鸡采纳,获得10
5秒前
5秒前
雪泪发布了新的文献求助10
6秒前
6秒前
锅里有两条鱼完成签到 ,获得积分10
6秒前
6秒前
烊驼发布了新的文献求助30
7秒前
子焱完成签到 ,获得积分10
8秒前
dongqing12311完成签到,获得积分10
10秒前
FashionBoy应助哭泣的鞋子采纳,获得10
11秒前
13秒前
和谐砖家发布了新的文献求助20
13秒前
13秒前
科目三应助VDC采纳,获得10
13秒前
廿二完成签到 ,获得积分10
15秒前
suee发布了新的文献求助10
15秒前
16秒前
妤懿完成签到 ,获得积分10
16秒前
19秒前
19秒前
588发布了新的文献求助10
19秒前
三杠发布了新的文献求助10
19秒前
20秒前
李小晴天发布了新的文献求助10
22秒前
刘雪磊完成签到,获得积分20
23秒前
23秒前
SciGPT应助nwds采纳,获得10
24秒前
咦yiyi发布了新的文献求助100
26秒前
26秒前
大模型应助坚定灭绝采纳,获得10
27秒前
aaa发布了新的文献求助10
29秒前
自然雁风完成签到,获得积分10
30秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502002
求助须知:如何正确求助?哪些是违规求助? 4598010
关于积分的说明 14462250
捐赠科研通 4531639
什么是DOI,文献DOI怎么找? 2483444
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496