亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxb10101应助知更鸟采纳,获得10
刚刚
42秒前
48秒前
1分钟前
tubby发布了新的文献求助10
1分钟前
隐形曼青应助研友_LNBgkL采纳,获得10
1分钟前
1分钟前
紫熊发布了新的文献求助20
1分钟前
科研通AI6应助tubby采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
研友_LNBgkL发布了新的文献求助10
1分钟前
lsl应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
Lavender发布了新的文献求助10
1分钟前
1分钟前
从容芮完成签到,获得积分0
1分钟前
紫熊发布了新的文献求助30
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Zoe完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助Lavender采纳,获得10
3分钟前
lsl应助科研通管家采纳,获得100
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
3分钟前
孙雪君完成签到,获得积分10
4分钟前
4分钟前
hb完成签到,获得积分0
4分钟前
4分钟前
4分钟前
科研通AI2S应助火星上惋庭采纳,获得10
4分钟前
Lin3J发布了新的文献求助30
5分钟前
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644786
求助须知:如何正确求助?哪些是违规求助? 4765654
关于积分的说明 15025637
捐赠科研通 4803114
什么是DOI,文献DOI怎么找? 2568008
邀请新用户注册赠送积分活动 1525509
关于科研通互助平台的介绍 1485018