亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yummy完成签到,获得积分10
6秒前
9秒前
15秒前
武文信发布了新的文献求助10
20秒前
武文信完成签到,获得积分20
25秒前
李爱国应助spark810采纳,获得10
27秒前
赵子嘉完成签到,获得积分10
37秒前
追寻的梦凡完成签到 ,获得积分10
48秒前
轻松的纸鹤完成签到,获得积分10
52秒前
orixero应助猫咪采纳,获得10
1分钟前
非洲大象完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
天妒嘤才完成签到 ,获得积分20
1分钟前
猫咪发布了新的文献求助10
1分钟前
加菲丰丰举报谷雨求助涉嫌违规
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
聂难敌完成签到,获得积分20
1分钟前
深情安青应助花开半夏采纳,获得10
1分钟前
科研通AI2S应助Hu1Guang采纳,获得10
1分钟前
醉倒天瓢完成签到 ,获得积分10
1分钟前
2分钟前
开放的果汁完成签到,获得积分10
2分钟前
CSun发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
spark810发布了新的文献求助10
2分钟前
3分钟前
开放的果汁关注了科研通微信公众号
3分钟前
Yeah发布了新的文献求助10
3分钟前
赘婿应助Yeah采纳,获得10
3分钟前
wanci应助spark810采纳,获得10
3分钟前
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得30
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
英勇羿发布了新的文献求助10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798009
关于积分的说明 7826470
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306328
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522