EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助sunshine采纳,获得10
1秒前
3秒前
xixi发布了新的文献求助10
4秒前
6秒前
落忆完成签到 ,获得积分10
7秒前
8秒前
8秒前
SciGPT应助HugginBearOuO采纳,获得10
8秒前
Ann完成签到,获得积分10
9秒前
11秒前
明理如凡完成签到,获得积分20
11秒前
12秒前
蓝天发布了新的文献求助10
12秒前
FashionBoy应助luminious采纳,获得10
13秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
共享精神应助乐乐采纳,获得10
17秒前
不想起昵称完成签到,获得积分10
17秒前
19秒前
19秒前
Lucas应助2182265539采纳,获得10
19秒前
易安发布了新的文献求助10
19秒前
半夜汽笛完成签到 ,获得积分10
20秒前
杨自强完成签到,获得积分10
21秒前
科研通AI2S应助感动的夏青采纳,获得10
21秒前
回穆完成签到 ,获得积分10
22秒前
22秒前
暴走乄发布了新的文献求助10
23秒前
汉堡包应助zhoujinzhao采纳,获得10
23秒前
小马甲应助sunshine采纳,获得10
24秒前
无极微光应助闫宣瑜采纳,获得20
25秒前
26秒前
Orange应助YK采纳,获得10
26秒前
加碘盐完成签到,获得积分10
27秒前
白枫完成签到 ,获得积分0
29秒前
量子星尘发布了新的文献求助10
29秒前
今后应助开放草莓采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750