EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风云鱼发布了新的文献求助10
1秒前
专注怜寒发布了新的文献求助10
2秒前
2秒前
wangf发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
酷波er应助舒心盼曼采纳,获得30
4秒前
一蓑烟雨任完成签到,获得积分10
4秒前
5秒前
小二郎应助flyinme采纳,获得10
5秒前
trap完成签到,获得积分10
5秒前
6秒前
ZoeChoo完成签到,获得积分10
7秒前
852应助ffff采纳,获得10
7秒前
7秒前
yyauthor发布了新的文献求助10
8秒前
Hopeful发布了新的文献求助10
9秒前
顾矜应助重要的莫茗采纳,获得10
10秒前
mo发布了新的文献求助10
10秒前
10秒前
小蘑菇应助dounai采纳,获得10
10秒前
量子星尘发布了新的文献求助10
13秒前
跳跃的白云完成签到,获得积分10
13秒前
14秒前
蓝天发布了新的文献求助10
15秒前
guyutang发布了新的文献求助10
15秒前
16秒前
重要的莫茗完成签到,获得积分10
18秒前
秋秋发布了新的文献求助10
19秒前
希望天下0贩的0应助hys采纳,获得10
19秒前
愤怒的灵松完成签到,获得积分10
19秒前
李是谁啊完成签到 ,获得积分10
19秒前
莫非完成签到,获得积分10
19秒前
zhao完成签到 ,获得积分10
20秒前
20秒前
美丽的如彤完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400