EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名小卒每文完成签到,获得积分10
刚刚
邢丹丹发布了新的文献求助10
刚刚
1秒前
2秒前
蓝天发布了新的文献求助10
3秒前
Akim应助春花采纳,获得10
3秒前
youy发布了新的文献求助20
3秒前
4秒前
多情易蓉完成签到,获得积分10
4秒前
4秒前
微光完成签到,获得积分10
4秒前
毛毛完成签到,获得积分10
5秒前
5秒前
大大怪发布了新的文献求助20
5秒前
6秒前
6秒前
斯文败类应助欣慰雪巧采纳,获得10
7秒前
梅菜菜完成签到,获得积分10
7秒前
9秒前
Hello应助zyx采纳,获得10
10秒前
10秒前
学术小白完成签到,获得积分10
10秒前
10秒前
梅菜菜发布了新的文献求助10
10秒前
舒克发布了新的文献求助10
11秒前
Rgly完成签到 ,获得积分10
11秒前
负责中恶完成签到,获得积分10
12秒前
chihiro完成签到,获得积分20
12秒前
墨琼琼应助科研通管家采纳,获得10
12秒前
墨琼琼应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933