EEG-based emergency braking intention detection during simulated driving

脑电图 计算机科学 汽车工程 物理医学与康复 心理学 模拟 工程类 医学 神经科学
作者
Xinbin Liang,Yang Yu,Yadong Liu,Kaixuan Liu,Yaru Liu,Zongtan Zhou
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12938-023-01129-4
摘要

Abstract Background Current research related to electroencephalogram (EEG)-based driver’s emergency braking intention detection focuses on recognizing emergency braking from normal driving, with little attention to differentiating emergency braking from normal braking. Moreover, the classification algorithms used are mainly traditional machine learning methods, and the inputs to the algorithms are manually extracted features. Methods To this end, a novel EEG-based driver’s emergency braking intention detection strategy is proposed in this paper. The experiment was conducted on a simulated driving platform with three different scenarios: normal driving, normal braking and emergency braking. We compared and analyzed the EEG feature maps of the two braking modes, and explored the use of traditional methods, Riemannian geometry-based methods, and deep learning-based methods to predict the emergency braking intention, all using the raw EEG signals rather than manually extracted features as input. Results We recruited 10 subjects for the experiment and used the area under the receiver operating characteristic curve (AUC) and F1 score as evaluation metrics. The results showed that both the Riemannian geometry-based method and the deep learning-based method outperform the traditional method. At 200 ms before the start of real braking, the AUC and F1 score of the deep learning-based EEGNet algorithm were 0.94 and 0.65 for emergency braking vs. normal driving, and 0.91 and 0.85 for emergency braking vs. normal braking, respectively. The EEG feature maps also showed a significant difference between emergency braking and normal braking. Overall, based on EEG signals, it was feasible to detect emergency braking from normal driving and normal braking. Conclusions The study provides a user-centered framework for human–vehicle co-driving. If the driver's intention to brake in an emergency can be accurately identified, the vehicle's automatic braking system can be activated hundreds of milliseconds earlier than the driver's real braking action, potentially avoiding some serious collisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心黑夜发布了新的文献求助10
1秒前
2秒前
2秒前
Sonny完成签到,获得积分10
2秒前
sunflower完成签到,获得积分0
4秒前
4秒前
学学术术小小白白完成签到,获得积分10
4秒前
布丁完成签到,获得积分10
4秒前
距破之舞完成签到,获得积分10
4秒前
4秒前
SongWhizz发布了新的文献求助10
5秒前
大模型应助布衣采纳,获得10
6秒前
Sonny发布了新的文献求助10
6秒前
Kristin完成签到,获得积分10
6秒前
mmm驳回了bkagyin应助
8秒前
量子星尘发布了新的文献求助10
9秒前
HeyU发布了新的文献求助10
9秒前
小倒霉蛋完成签到 ,获得积分10
9秒前
9秒前
9秒前
emilybei发布了新的文献求助10
10秒前
科研通AI6应助larychen采纳,获得10
10秒前
11秒前
畅快的寻凝完成签到,获得积分10
12秒前
lin发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
领导范儿应助诚心黑夜采纳,获得10
15秒前
15秒前
TommyLeo关注了科研通微信公众号
16秒前
hh完成签到,获得积分10
16秒前
Sonny发布了新的文献求助10
16秒前
大哥爱发文章完成签到,获得积分10
17秒前
18秒前
可爱的函函应助larychen采纳,获得10
18秒前
依依发布了新的文献求助10
19秒前
19秒前
咩咩羊发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830