SCZ-SCAN: An automated Schizophrenia detection system from electroencephalogram signals

计算机科学 精神分裂症(面向对象编程) 卷积神经网络 人工智能 模式识别(心理学) 脑电图 卷积(计算机科学) 威尔科克森符号秩检验 秩(图论) 机器学习 人工神经网络 心理学 数学 神经科学 组合数学 程序设计语言 课程 教育学
作者
Geet Sahu,Mohan Karnati,Abhishek Gupta,Ayan Seal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105206-105206 被引量:7
标识
DOI:10.1016/j.bspc.2023.105206
摘要

Schizophrenia (SCZ) is a severe neurological and physiological syndrome that perverts a patient’s perception of reality. SCZ exhibits several symptoms, including hallucinations, delusions, aberrant behavior, and thinking. It affects their professional, academic, personal, and social lives. Neurologists use a variety of verbal and visual tests to determine SCZ. However, these methods are laborious, time-consuming, superficial, and vulnerable to mistakes. Therefore, it is necessary to create an automated model for SCZ detection. Convolutional neural networks have swiftly established themselves in the field of mental health care due to the growth of deep learning in recent decades. Electroencephalogram (EEG) data records the variations in the neural dynamics of human memory. Using EEG data, this study proposes an automatic SCZ detection method using separable convolution attention network (SCZ-SCAN). The proposed network employs depth-wise separable convolution and attention networks on high-level and low-level to aggregate characteristics of 2-D scalogram images acquired from the continuous wavelet transform. The depth-wise separable convolutions help to create a lightweight framework, while attention techniques concentrate on significant features and reduce futile computations by removing the transmission of irrelevant features. The proposed approach has an average classification accuracy of 99% and 95% on the IBIB-PAN and EEG data from the basic sensory task in SZ dataset. Moreover, statistical hypothesis testing is performed using Wilcoxon’s Rank-Sum test to signify the model performance and it proves that SCZ-SCAN is statistically efficient to nine cutting-edge methods. Experimental results show that the PSFAN statistically defeats 11 contemporary methods, proving its effectiveness for medical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jck发布了新的文献求助10
2秒前
3秒前
4秒前
Wcc应助含糊的代丝采纳,获得10
4秒前
kingmin完成签到,获得积分10
4秒前
Hello应助Allough采纳,获得10
5秒前
qqaeao发布了新的文献求助10
6秒前
微笑弘文应助zyj采纳,获得10
6秒前
mahehivebv111发布了新的文献求助30
7秒前
凡而不庸应助哭泣的映秋采纳,获得10
7秒前
良辰完成签到,获得积分0
7秒前
9秒前
星辰大海应助彭nnnnn采纳,获得10
9秒前
hehehe发布了新的文献求助10
10秒前
10秒前
秦艳茹完成签到 ,获得积分10
11秒前
Jasper应助MM采纳,获得10
16秒前
16秒前
安详绿草发布了新的文献求助10
16秒前
17秒前
CodeCraft应助理li采纳,获得10
17秒前
今天也要加油鸭完成签到,获得积分10
18秒前
18秒前
wf发布了新的文献求助10
18秒前
18秒前
拌拌发布了新的文献求助10
19秒前
22秒前
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
外向的沅完成签到,获得积分20
22秒前
材化小将军完成签到,获得积分10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
喜悦中道应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522922
求助须知:如何正确求助?哪些是违规求助? 3103872
关于积分的说明 9267825
捐赠科研通 2800626
什么是DOI,文献DOI怎么找? 1537038
邀请新用户注册赠送积分活动 715354
科研通“疑难数据库(出版商)”最低求助积分说明 708759