Evaluating the Zero-shot Robustness of Instruction-tuned Language Models

计算机科学 稳健性(进化) 差异(会计) 嵌入 要价 人工智能 自然语言处理 生物化学 基因 会计 经济 业务 经济 化学
作者
Jiuding Sun,Chantal Shaib,Byron Wallace
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2306.11270
摘要

Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing ``soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮雨兰发布了新的文献求助10
刚刚
每天睡不醒完成签到 ,获得积分10
刚刚
温暖诗双完成签到,获得积分10
1秒前
2秒前
诺u完成签到,获得积分10
2秒前
sunshine完成签到,获得积分10
3秒前
4秒前
浮游应助潇洒平松采纳,获得10
5秒前
wlscj应助诺u采纳,获得20
6秒前
健壮雨兰完成签到,获得积分10
6秒前
8秒前
长情平彤发布了新的文献求助30
8秒前
Shi完成签到,获得积分10
8秒前
HtheJ完成签到,获得积分10
9秒前
里多完成签到,获得积分20
10秒前
10秒前
环游世界完成签到 ,获得积分10
11秒前
充电宝应助酷炫小天鹅采纳,获得30
11秒前
12秒前
浮游应助dgqz采纳,获得10
13秒前
明研完成签到,获得积分10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
风吹麦田应助科研通管家采纳,获得50
15秒前
斯文败类应助科研通管家采纳,获得30
15秒前
科目三应助科研通管家采纳,获得10
15秒前
张大诚完成签到,获得积分10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
彭于彦祖应助科研通管家采纳,获得150
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得150
15秒前
左右应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350697
求助须知:如何正确求助?哪些是违规求助? 4484017
关于积分的说明 13957727
捐赠科研通 4383424
什么是DOI,文献DOI怎么找? 2408351
邀请新用户注册赠送积分活动 1400964
关于科研通互助平台的介绍 1374387