Evaluating the Zero-shot Robustness of Instruction-tuned Language Models

计算机科学 稳健性(进化) 差异(会计) 嵌入 要价 人工智能 自然语言处理 生物化学 基因 会计 经济 业务 经济 化学
作者
Jiuding Sun,Chantal Shaib,Byron Wallace
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2306.11270
摘要

Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing ``soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻舟者完成签到,获得积分10
1秒前
1秒前
1秒前
橘子屿布丁完成签到,获得积分10
2秒前
2秒前
Zhy完成签到,获得积分10
3秒前
bzy发布了新的文献求助10
3秒前
3秒前
风趣秋白完成签到,获得积分10
3秒前
情怀应助tanmeng77采纳,获得10
3秒前
若空完成签到 ,获得积分10
4秒前
典雅又夏发布了新的文献求助10
4秒前
XIXI完成签到,获得积分10
4秒前
5秒前
夏夏发布了新的文献求助10
5秒前
666完成签到,获得积分10
5秒前
5秒前
tzy完成签到,获得积分10
5秒前
Jackcaosky发布了新的文献求助200
5秒前
tt完成签到 ,获得积分10
6秒前
tennisgirl发布了新的文献求助30
6秒前
DDTT发布了新的文献求助10
7秒前
Li发布了新的文献求助10
8秒前
xiaozhang完成签到,获得积分10
8秒前
科研小民工应助Jinji采纳,获得200
8秒前
9秒前
Elaine完成签到,获得积分10
9秒前
h41692011完成签到 ,获得积分10
9秒前
斯文败类应助圆圆采纳,获得30
10秒前
李健的小迷弟应助7777777采纳,获得10
10秒前
涛浪驳回了田様应助
10秒前
10秒前
10秒前
11秒前
11秒前
个木发布了新的文献求助10
11秒前
上官若男应助SY采纳,获得10
12秒前
不易BY完成签到,获得积分10
12秒前
ee关闭了ee文献求助
12秒前
Ysh完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678