A Smart Gas Sensor Using Machine Learning Algorithms: Sensor Types Based on IED Configurations, Fabrication Techniques, Algorithmic Approaches, Challenges, Progress, and Limitations: A Review

计算机科学 电阻式触摸屏 智能传感器 电容感应 灵敏度(控制系统) 机器学习 算法 人工智能 嵌入式系统 电子工程 无线传感器网络 工程类 计算机网络 计算机视觉 操作系统
作者
Abdelghaffar Nasri,Aicha Boujnah,Aïmen Boubaker,Adel Kalboussi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11336-11355 被引量:9
标识
DOI:10.1109/jsen.2023.3268342
摘要

Over the past decade, machine learning (ML) and artificial intelligence (AI) have attracted great interest in research and various practical applications. Currently, smart, fast, and high sensitivity with excellent selectivity are becoming increasingly interesting due to the high need for environmental safety and medical applications. The main challenge is to improve sensor selectivity, which requires the combination of interdisciplinary research areas to successfully develop smart gas/chemical sensing devices with better performance. In this review, we present a few principles of gas sensing based on low-cost interdigital electrodes (IDEs), such as electrochemical, resistive, capacitive, and acoustic sensors. In addition, the most important current methods for improving gas sensing performance, the different materials, the different techniques used to fabricate IDE gas sensors, and their advantages and limitations are presented. In addition, a comparison between different ML and AI algorithms for pattern recognition and classification algorithms is also discussed. The discussion then establishes application cases of smart ML algorithms, which provide efficient data processing methods, for the design of smart gas sensors that are highly selective. In addition, the challenges and limitations of ML in gas sensor applications are critically discussed. The study shows the importance of ML with the need for structural optimization to develop and improve smart, sensitive, and selective sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd发布了新的文献求助20
刚刚
1秒前
小蘑菇应助麻花精采纳,获得10
1秒前
1秒前
荒1完成签到,获得积分10
3秒前
在水一方应助橙橙橙橙采纳,获得10
3秒前
3秒前
科研小达人完成签到,获得积分10
4秒前
5秒前
zyy发布了新的文献求助10
7秒前
tonyhuang完成签到,获得积分10
8秒前
科研通AI2S应助卓一曲采纳,获得10
8秒前
9秒前
赘婿应助stars采纳,获得10
9秒前
9秒前
9秒前
9秒前
浅尝离白应助ssgecust采纳,获得30
11秒前
发财小鱼关注了科研通微信公众号
11秒前
11秒前
小张完成签到 ,获得积分10
11秒前
朴素亦云完成签到 ,获得积分10
11秒前
12346164发布了新的文献求助10
12秒前
爆米花应助潘榆采纳,获得20
12秒前
专一的荧完成签到,获得积分10
14秒前
锦墨人生发布了新的文献求助10
17秒前
打打应助科研小白采纳,获得10
17秒前
17秒前
haoryan完成签到,获得积分10
18秒前
Jay完成签到,获得积分10
19秒前
20秒前
gaogao发布了新的文献求助10
20秒前
21秒前
FashionBoy应助锦墨人生采纳,获得10
22秒前
小饼干完成签到,获得积分20
23秒前
小蘑菇应助材料摆渡人采纳,获得10
23秒前
尛瞐慶成发布了新的文献求助50
23秒前
双马尾小男生2应助叶帅采纳,获得10
23秒前
斯文败类应助黙宇循光采纳,获得10
24秒前
AT发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491