杰纳斯
大肠杆菌
生物发光
纳米颗粒
核化学
化学
细菌
重组DNA
发光
拉伤
材料科学
纳米技术
生物化学
生物
基因
解剖
遗传学
光电子学
作者
М.В. Фомина,Еlena Sizova,Kseniya S Nechitailo
标识
DOI:10.1007/s00203-023-03546-4
摘要
The toxic action of CuO-Ag Janus particles and a bicomponent mixture of CuO and Ag particles have been studied against a recombinant strain Escherichia coli K12 TG1 with cloned luxCDABE genes of marine bacteria Photobacterium leiognathi 54D10. An original method was used for the preparation CuO-Ag Janus like nanoparticles by simultaneous electrical explosion of twisted Cu and Ag wires in a mixture of argon and oxygen gases. The bioluminescence inhibition on recombinant strain E. coli shows that CuO-Ag Janus NPs were effective. The concentration by 50% (EC50) for CuO-Ag Janus NPs was 0.03 ± 0.001 mg/ml (p < 0.05). The bioactivity of the bicomponent mixture of CuO and Ag NPs (EC50) was 0.25 ± 0.002 mg/ml (p < 0.05). The effective concentration of CuO-Ag Janus NPs against E. coli was comparatively lower than those of bicomponent mixture CuO and Ag against which explains the higher activity of CuO-Ag Janus NPs. The toxicity values of CuO and Ag as monocomponent nanoparticles were 2-32 times lower compared with the bicomponent nanoparticles. A dose-dependent inhibition of bacterial luminescence developed over time was noted. The result of contact E. coli with CuO-Ag Janus particles was 100% suppression of bacterial luminescence from the first minutes of contact occured starting with a content of 2.0 mg/ml and within the next 180 min. The effect of bioactivity prolonged in the final concentration of nanopowder (EC100 = 0.0625 ± 0.002 mg/ml) (p < 0.05). CuO-Ag Janus particles exhibited more pronounced antibacterial activity compared to CuO, Ag nanoparticles and their mechanical mixture.
科研通智能强力驱动
Strongly Powered by AbleSci AI