Patient-Reported Outcome–Based Prediction for Postdischarge Complications after Lung Surgery

医学 列线图 逻辑回归 围手术期 置信区间 外科 内科学
作者
Ding Yang,Xing Wei,Hong Qian,Chenguang Zhao,Juwei Mu
出处
期刊:Thoracic and Cardiovascular Surgeon [Georg Thieme Verlag KG]
卷期号:71 (08): 671-679 被引量:5
标识
DOI:10.1055/s-0043-1768224
摘要

Abstract Background Patients undergoing lung tumor surgery may experience various complications after discharge from the hospital. Using patient-reported outcomes (PROs), this study attempted to identify relevant indicators of postdischarge complications after lung tumor surgery and develop a predictive nomogram model to evaluate the risk for individual patients. Methods Patients who underwent lung tumor surgery between December 2021 and June 2022 were included in this study. PROs were assessed using the Perioperative Symptom Assessment for Lung Surgery scale and were assessed preoperatively at baseline, on postoperative day 1 (POD1) 1 to POD4, and then weekly until the fourth week. A random forest machine learning prediction model was built to rank the importance of each PRO score of patients on POD1 to POD4. We then selected the top 10 variables in terms of importance for the multivariable logistic regression analysis. Finally, a nomogram was developed. Results PROs, including coughing (POD3 and POD4), daily activity (POD1), and pain (POD1 and POD2), were associated with postdischarge complications in patients undergoing lung tumor surgery. The predictive model showed good performance in estimating the risk of postdischarge complications, with an area under the curve of 0.833 (95% confidence interval: 0.753–0.912), while maintaining good calibration and clinical value. Conclusion We found that PRO scores on POD1 to POD4 were associated with postdischarge complications after lung tumor surgery, and we developed a helpful nomogram model to predict the risk of postdischarge complications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助麻花采纳,获得10
1秒前
2秒前
kaka完成签到 ,获得积分10
3秒前
4秒前
CodeCraft应助汪宇采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助mu采纳,获得10
6秒前
爱听歌小蚂蚁关注了科研通微信公众号
6秒前
一种信仰完成签到 ,获得积分10
6秒前
6秒前
顾矜应助淡淡的觅松采纳,获得10
7秒前
10秒前
mount完成签到,获得积分10
12秒前
斯文败类应助long采纳,获得10
13秒前
14秒前
Orange应助作业对不起采纳,获得10
15秒前
15秒前
18秒前
mu发布了新的文献求助10
19秒前
风清扬应助科研通管家采纳,获得30
20秒前
蒹葭苍苍应助科研通管家采纳,获得10
21秒前
风清扬应助科研通管家采纳,获得30
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
蒹葭苍苍应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
风清扬应助科研通管家采纳,获得30
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
风清扬应助科研通管家采纳,获得30
21秒前
小郭子应助科研通管家采纳,获得10
21秒前
小郭子应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
小郭子应助科研通管家采纳,获得10
21秒前
21秒前
小郭子应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896